Araştırma Makalesi
BibTex RIS Kaynak Göster

UAV Image-Based Estimation of Surface Energy Balance Components in Sorghum under Different Irrigation Regimes

Yıl 2025, Cilt: 8 Sayı: 5, 658 - 665, 15.09.2025
https://doi.org/10.47115/bsagriculture.1741177

Öz

Precise knowledge of plot-scale surface energy partitioning is fundamental for agricultural water management, yet conventional ground or satellite techniques rarely resolve the heterogeneity for the plot scale areas. This study couples multispectral and thermal imagery acquired weekly–bi-weekly by a DJI Matrice-300 RTK/MicaSense-Altum platform with the physically based Two-Source Energy Balance (TSEB) model to quantify net radiation (Rn), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) in a randomized sorghum experiment comprising four irrigation levels (100, 70, 40 % ETc and rain-fed) in the Bafra Plain, Türkiye (May–October 2021). The model produced consistent seasonal trends: midday Rn peaked at 797 W m⁻², while G/Rn declined from ≈0.20 at emergence to <0.10 under full canopy. Strong irrigation-induced contrasts were detected; fully irrigated plots reached maximum LE of 692 W m⁻² and H of 10 W m⁻², whereas rain-fed plots dropped to LE of 215 W m⁻² and exceeded H of 450 W m⁻² during peak stress. Flux magnitudes and partitioning agreed with published eddy covariance and lysimeter studies, indicating that UAV-driven TSEB reliably bridges the scale gap between point sensors and satellites. The approach offers significant potential for real-time irrigation scheduling and water resource optimization, with applications extending to diverse agricultural systems and climate conditions.

Etik Beyan

Since no studies involving humans or animals were conducted, ethical committee approval was not required for this study.

Destekleyen Kurum

Scientific and Technological Research Council of Turkey (TUBITAK)

Proje Numarası

118O831

Teşekkür

This study was supported by Scientific and Technological Research Council of Türkiye (TUBITAK) under the Grant Number 118O831.

Kaynakça

  • Allen R G, Tasumi M, Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J Irrig Drain Eng, 133(4): 380-394.
  • Allen R G, Pereira L S, Howell T A, Jensen M E. 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manag, 98(6): 899-920.
  • Anderson M C, Allen R G, Morse A, Kustas W P. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ, 122: 50-65.
  • Bastiaanssen W G, Menenti M, Feddes R A, Holtslag A A M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol, 212: 198-212.
  • Bastiaanssen W G, Noordman E J M, Pelgrum H, Davids G, Thoreson B P, Allen R G. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J Irrig Drain Eng, 131(1): 85-93.
  • Cemek B, Arslan H, Küçüktopcu E, Simsek H. 2022. Comparative analysis of machine learning techniques for estimating groundwater deuterium and oxygen-18 isotopes. Stoch Environ Res Risk Assess, 36: 4271-4285.
  • Gao R, Torres-Rua A F, Nieto H, Zahn E, Hipps L, Kustas W P, Alsina M M, Bambach N, Castro S J, Prueger J H. 2023. ET partitioning assessment using the TSEB model and sUAS information across California Central Valley vineyards. Remote Sens Basel, 15: 756.
  • Howell T, Tolk J, Evett S, Copeland K, Dusek D. 2007. Evapotranspiration of deficit irrigated sorghum, World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, Tampa, May 15-19, 2007, USA, pp: 1-10.
  • Jackson R D, Idso S, Reginato R, Pinter P. 1981. Canopy temperature as a crop water stress indicator. Water Resour Res, 17: 1133-1138.
  • Kustas W P, Daughtry C S. 1990. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric For Meteorol, 49: 205-223.
  • Nassar A, Torres-Rua A, Kustas W, Alfieri J, Hipps L, Prueger J, Nieto H, Alsina M M, White W, McKee L. 2021. Assessing daily evapotranspiration methodologies from one-time-of-day sUAS and EC information in the GRAPEX project. Remote Sens Basel, 13: 2887.
  • Norman J M, Kustas W P, Humes K S. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric For Meteorol, 77: 263-293.
  • Novák V, Křížová K. 2020. Sentinel-2 imagery utilization for small-plot agricultural studies. IOP Conf Ser Mater Sci Eng, 725: 1.
  • Senay G B, Bohms S, Singh R K, Gowda P H, Velpuri N M, Alemu H, Verdin J P. 2013. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J Am Water Resour Assoc, 49: 577-591.
  • Tunca E, Köksal E S, Çetin S, Ekiz N M, Balde H. 2018. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environ Monit Assess, 190: 682.
  • Tunca E, Köksal E S. 2024. Evaluating the impact of different UAV thermal sensors on evapotranspiration estimation. Infrared Phys Technol, 136: 105093.
  • Yıldırım D, Cemek B, Küçüktopcu E. 2019. Bulanık yapay sinir ağları ve çok katmanlı yapay sinir ağları ile günlük buharlaşma tahmini. Toprak Su Dergisi, 8(1): 24-31.

UAV Image-Based Estimation of Surface Energy Balance Components in Sorghum under Different Irrigation Regimes

Yıl 2025, Cilt: 8 Sayı: 5, 658 - 665, 15.09.2025
https://doi.org/10.47115/bsagriculture.1741177

Öz

Precise knowledge of plot-scale surface energy partitioning is fundamental for agricultural water management, yet conventional ground or satellite techniques rarely resolve the heterogeneity for the plot scale areas. This study couples multispectral and thermal imagery acquired weekly–bi-weekly by a DJI Matrice-300 RTK/MicaSense-Altum platform with the physically based Two-Source Energy Balance (TSEB) model to quantify net radiation (Rn), soil heat flux (G), sensible heat flux (H) and latent heat flux (LE) in a randomized sorghum experiment comprising four irrigation levels (100, 70, 40 % ETc and rain-fed) in the Bafra Plain, Türkiye (May–October 2021). The model produced consistent seasonal trends: midday Rn peaked at 797 W m⁻², while G/Rn declined from ≈0.20 at emergence to <0.10 under full canopy. Strong irrigation-induced contrasts were detected; fully irrigated plots reached maximum LE of 692 W m⁻² and H of 10 W m⁻², whereas rain-fed plots dropped to LE of 215 W m⁻² and exceeded H of 450 W m⁻² during peak stress. Flux magnitudes and partitioning agreed with published eddy covariance and lysimeter studies, indicating that UAV-driven TSEB reliably bridges the scale gap between point sensors and satellites. The approach offers significant potential for real-time irrigation scheduling and water resource optimization, with applications extending to diverse agricultural systems and climate conditions.

Etik Beyan

Since no studies involving humans or animals were conducted, ethical committee approval was not required for this study.

Proje Numarası

118O831

Teşekkür

This study was supported by Scientific and Technological Research Council of Türkiye (TUBITAK) under the Grant Number 118O831.

Kaynakça

  • Allen R G, Tasumi M, Trezza R. 2007. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. J Irrig Drain Eng, 133(4): 380-394.
  • Allen R G, Pereira L S, Howell T A, Jensen M E. 2011. Evapotranspiration information reporting: I. Factors governing measurement accuracy. Agric Water Manag, 98(6): 899-920.
  • Anderson M C, Allen R G, Morse A, Kustas W P. 2012. Use of Landsat thermal imagery in monitoring evapotranspiration and managing water resources. Remote Sens Environ, 122: 50-65.
  • Bastiaanssen W G, Menenti M, Feddes R A, Holtslag A A M. 1998. A remote sensing surface energy balance algorithm for land (SEBAL). 1. Formulation. J Hydrol, 212: 198-212.
  • Bastiaanssen W G, Noordman E J M, Pelgrum H, Davids G, Thoreson B P, Allen R G. 2005. SEBAL model with remotely sensed data to improve water-resources management under actual field conditions. J Irrig Drain Eng, 131(1): 85-93.
  • Cemek B, Arslan H, Küçüktopcu E, Simsek H. 2022. Comparative analysis of machine learning techniques for estimating groundwater deuterium and oxygen-18 isotopes. Stoch Environ Res Risk Assess, 36: 4271-4285.
  • Gao R, Torres-Rua A F, Nieto H, Zahn E, Hipps L, Kustas W P, Alsina M M, Bambach N, Castro S J, Prueger J H. 2023. ET partitioning assessment using the TSEB model and sUAS information across California Central Valley vineyards. Remote Sens Basel, 15: 756.
  • Howell T, Tolk J, Evett S, Copeland K, Dusek D. 2007. Evapotranspiration of deficit irrigated sorghum, World Environmental and Water Resources Congress 2007: Restoring Our Natural Habitat, Tampa, May 15-19, 2007, USA, pp: 1-10.
  • Jackson R D, Idso S, Reginato R, Pinter P. 1981. Canopy temperature as a crop water stress indicator. Water Resour Res, 17: 1133-1138.
  • Kustas W P, Daughtry C S. 1990. Estimation of the soil heat flux/net radiation ratio from spectral data. Agric For Meteorol, 49: 205-223.
  • Nassar A, Torres-Rua A, Kustas W, Alfieri J, Hipps L, Prueger J, Nieto H, Alsina M M, White W, McKee L. 2021. Assessing daily evapotranspiration methodologies from one-time-of-day sUAS and EC information in the GRAPEX project. Remote Sens Basel, 13: 2887.
  • Norman J M, Kustas W P, Humes K S. 1995. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature. Agric For Meteorol, 77: 263-293.
  • Novák V, Křížová K. 2020. Sentinel-2 imagery utilization for small-plot agricultural studies. IOP Conf Ser Mater Sci Eng, 725: 1.
  • Senay G B, Bohms S, Singh R K, Gowda P H, Velpuri N M, Alemu H, Verdin J P. 2013. Operational evapotranspiration mapping using remote sensing and weather datasets: A new parameterization for the SSEB approach. J Am Water Resour Assoc, 49: 577-591.
  • Tunca E, Köksal E S, Çetin S, Ekiz N M, Balde H. 2018. Yield and leaf area index estimations for sunflower plants using unmanned aerial vehicle images. Environ Monit Assess, 190: 682.
  • Tunca E, Köksal E S. 2024. Evaluating the impact of different UAV thermal sensors on evapotranspiration estimation. Infrared Phys Technol, 136: 105093.
  • Yıldırım D, Cemek B, Küçüktopcu E. 2019. Bulanık yapay sinir ağları ve çok katmanlı yapay sinir ağları ile günlük buharlaşma tahmini. Toprak Su Dergisi, 8(1): 24-31.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sulama Sistemleri
Bölüm Research Articles
Yazarlar

Emre Tunca 0000-0001-6869-9602

Proje Numarası 118O831
Erken Görünüm Tarihi 10 Eylül 2025
Yayımlanma Tarihi 15 Eylül 2025
Gönderilme Tarihi 13 Temmuz 2025
Kabul Tarihi 18 Ağustos 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 5

Kaynak Göster

APA Tunca, E. (2025). UAV Image-Based Estimation of Surface Energy Balance Components in Sorghum under Different Irrigation Regimes. Black Sea Journal of Agriculture, 8(5), 658-665. https://doi.org/10.47115/bsagriculture.1741177

                                                  24890