Derleme
BibTex RIS Kaynak Göster

VACCINE STUDIES TARGETING MELANOMA

Yıl 2025, Cilt: 8 Sayı: 2, 44 - 63, 31.12.2025

Öz

Melanoma is a malignancy of melanocytic origin that has particular importance among skin cancers due to its high metastatic potential and mortality. Although surgery, chemotherapy, radiotherapy, and targeted therapies achieve partial success in melanoma, treatment resistance, relapse, and systemic adverse effects highlight the ongoing need for novel immunotherapeutic approaches. Cancer vaccines have emerged as strategies that aim to reduce tumor burden and prevent recurrence by inducing specific humoral and cellular immune responses against tumor cells or tumor-associated antigens. In this review, the current status of vaccine studies targeting the immune system in the treatment of melanoma is comprehensively evaluated within the framework of mRNA-based vaccines, dendritic cell (DC) vaccines, and neoantigen-based personalized vaccine strategies. Preclinical animal models and clinical studies involving patients with metastatic melanoma reported in the literature demonstrate that mRNA and DC vaccines can effectively activate CD4⁺ and CD8⁺ T cells, slow tumor growth, and provide clinical responses in selected cases. However, the genetic heterogeneity of melanoma, immune escape mechanisms, appropriate antigen selection, optimization of adjuvants and delivery systems, and issues related to manufacturing and cost constitute major limitations. Current evidence indicates that melanoma vaccines, particularly when combined with other immunotherapies such as immune checkpoint inhibitors, have the potential to contribute meaningfully to treatment; however, well-designed clinical trials involving larger patient cohorts are needed before these approaches can be incorporated into routine clinical practice.

Kaynakça

  • 1. Coşkunpınar, E., et al., Kanser Aşılarının İmmünoterapötik Açıdan Değerlendirilmesi. İzlek Akademik Dergi, 2018. 1(1): p. 1-11.
  • 2. Ozdemır, A., E. Kaplan Serin, and M. Savas, CANCER RISK FACTORS AND PREVENTION IN TURKEY. International Journal of Health Services Research and Policy, 2018. 3(3): p. 143-150.
  • 3. Zahavi, D. and L. Weiner, Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel), 2020. 9(3).
  • 4. Mian, M., et al., Bortezomib, Thalidomide and Lenalidomide: Have They Really Changed the Outcome of Multiple Myeloma? Anticancer Res, 2016. 36(3): p. 1059-65.
  • 5. Lee, C., et al., Historical review of melanoma treatment and outcomes. Clin Dermatol, 2013. 31(2): p. 141-7. 6. Giblin, A.V. and J.M. Thomas, Incidence, mortality and survival in cutaneous melanoma. J Plast Reconstr Aesthet Surg, 2007. 60(1): p. 32-40.
  • 7. Blanchard, T., P.K. Srivastava, and F. Duan, Vaccines against advanced melanoma. Clin Dermatol, 2013. 31(2): p. 179-90.
  • 8. Ribas, A., et al., Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol, 2003. 21(12): p. 2415-32.
  • 9. Palucka, K., H. Ueno, and J. Banchereau, Recent developments in cancer vaccines. J Immunol, 2011. 186(3): p. 1325-31.
  • 10. Akdeniz, M. and B. Yardımcı, Kanser Aşıları. Klinik Tıp Aile Hekimliği, 2016. 8(2): p. 59-69.
  • 11. Mockey, M., et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther, 2007. 14(9): p. 802-14.
  • 12. Slingluff, C.L., Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms. Cancer Immunol Immunother, 1999. 48(7): p. 371-3.
  • 13. Wang, Y., et al., mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol Ther, 2018. 26(2): p. 420-434.
  • 14. Butterfield, L.H., et al., Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother, 2008. 31(3): p. 294-309.
  • 15. Smithers, M., et al., Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen. Cancer Immunol Immunother, 2003. 52(1): p. 41-52.
  • 16. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
  • 17. Preston, B.D., T.M. Albertson, and A.J. Herr, DNA replication fidelity and cancer. Semin Cancer Biol, 2010. 20(5): p. 281-93.
  • 18. Peng, Y., et al., Immune Surveillance and Immune Escape in Cancer: Mechanisms and Immunotherapy. MedComm (2020), 2025. 6(10): p. e70321.
  • 19. Blanchard, T., P.K. Srivastava, and F. Duan, Vaccines against advanced melanoma. Clinics in dermatology, 2013. 31(2): p. 179-190.
  • 20. Lee, C., et al., Historical review of melanoma treatment and outcomes. Clinics in dermatology, 2013. 31(2): p. 141-147.
  • 21. Dakal, T.C., et al., Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (2020), 2024. 5(6): p. e582.
  • 22. Singh, S.R., et al., Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers, 2025. 17(7): p. 1082.
  • 23. Hernández Borrero, L.J. and W.S. El-Deiry, Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer, 2021. 1876(1): p. 188556.
  • 24. Erkal, B., et al., Kanser Aşılarının İmmünoterapötik Açıdan Değerlendirilmesi. Izlek akademik dergi, 2018. 1(1): p. 1-11.
  • 25. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
  • 26. Ng, C.S., Immunotherapy of Oncovirus-Induced Cancers: A Review on the Development and Efficacy of Targeted Vaccines. Vaccines (Basel), 2025. 13(9).
  • 27. Braga, A., et al., Global Perspectives on HPV Vaccination: Achievements, Challenges, and Lessons from the Brazilian Experience. Vaccines (Basel), 2025. 13(11).
  • 28. Omohwovo, J., et al., Barriers to HPV vaccination and cervical cancer screening in developing countries. Journal of Global Health Science, 2025. 7.
  • 29. Housman, G., et al., Drug resistance in cancer: an overview. Cancers (Basel), 2014. 6(3): p. 1769-92.
  • 30. Serin, E.K., A. Ozdemır, and M. Savas, Cancer risk factors and prevention in Turkey. International Journal of Health Services Research and Policy, 2018. 3(3): p. 143-150.
  • 31. Garbe, C., et al., Skin cancers are the most frequent cancers in fair-skinned populations, but we can prevent them. Eur J Cancer, 2024. 204: p. 114074.
  • 32. Caraviello, C., et al., Melanoma Skin Cancer: A Comprehensive Review of Current Knowledge. Cancers (Basel), 2025. 17(17).
  • 33. Rajpar, S. and J. Marsden, ABC of skin cancer. 2009: John Wiley & Sons.
  • 34. Giblin, A.-V. and J. Thomas, Incidence, mortality and survival in cutaneous melanoma. Journal of plastic, reconstructive & aesthetic surgery, 2007. 60(1): p. 32-40.
  • 35. Zhao, F., et al., Immunotherapy: A new target for cancer cure (Review). Oncol Rep, 2023. 49(5).
  • 36. Şakalar, C., K. İzgi, and H. Canatan, Cancer Immunotherapy and Monoclonal Antibodies. Firat Health Sci J, 2013. 27: p. 105-10.
  • 37. Mian, M., et al., Bortezomib, thalidomide and lenalidomide: Have they really changed the outcome of multiple myeloma? Anticancer research, 2016. 36(3): p. 1059-1065.
  • 38. Cho, D.-Y., et al., Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell transplantation, 2013. 22(4): p. 731-739.
  • 39. Corveleyn, J., et al., The theory and treatment of depression: Towards a dynamic interactionism model. 2013: Routledge.
  • 40. Jaganti, V., S. Das, and T. Sampath, A review on cancer vaccines. Int J Pharma Bio Sci, 2011. 2(3): p. 86-97.
  • 41. Kumar, V.P., et al., Cancer vaccines: a promising role in cancer therapy. Acad J Cancer Res, 2010. 3(2): p. 16-21.
  • 42. Palucka, K., H. Ueno, and J. Banchereau, Recent developments in cancer vaccines. The journal of Immunology, 2011. 186(3): p. 1325-1331.
  • 43. Reuck, V. and A. Sauter, Gene, vaccine and immunotherapies against cancer: New approaches to an old problem-Results of the project “Future development of cancer therapy”. 2007.
  • 44. Menaria, J., S. Kitawat, and V. Verma, Cancer vaccine: an overview. Sch J App Med Sci, 2013. 1: p. 161-171.
  • 45. Becker, M.D., J. Dally, and J. Martini, Cancer vaccine therapies: failures and future opportunities. MD Becker Partners LLC, Newtown, 2010: p. 34-37.
  • 46. Ribas, A., et al., Current developments in cancer vaccines and cellular immunotherapy. Journal of clinical oncology, 2003. 21(12): p. 2415-2432.
  • 47. Barrios, Y., et al., Anti-idiotypic vaccination in the treatment of low-grade B-cell lymphoma. Haematologica, 2002. 87(4): p. 400-407.
  • 48. Clark, J.R. and J.B. March, Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends in biotechnology, 2006. 24(5): p. 212-218.
  • 49. Guo, C., et al., Therapeutic cancer vaccines: past, present, and future. Advances in cancer research, 2013. 119: p. 421-475.
  • 50. Gąbka-Buszek, A., et al., Novel Genetic Melanoma Vaccines Based on Induced Pluripotent Stem Cells or Melanosphere-Derived Stem-Like Cells Display High Efficacy in a Murine Tumor Rejection Model. Vaccines (Basel), 2020. 8(2).
  • 51. Canoui-Poitrine, F., et al., Identification of three hidradenitis suppurativa phenotypes: latent class analysis of a cross-sectional study. Journal of Investigative Dermatology, 2013. 133(6): p. 1506-1511.
  • 52. Luke, J.J. and P.A. Ott, New developments in the treatment of metastatic melanoma - role of dabrafenib-trametinib combination therapy. Drug Healthc Patient Saf, 2014. 6: p. 77-88.
  • 53. Parmiani, G., et al., Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst, 2002. 94(11): p. 805-18.
  • 54. Slingluff, C.L., Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms. Cancer Immunology, Immunotherapy, 1999. 48: p. 371-373.
  • 55. Srivastava, P.K. Do human cancers express sharedprotectiveantigens? or The necessity of remembrance of things past. in Seminars in Immunology. 1996. Elsevier.
  • 56. Lei, W., et al., Cancer vaccines: platforms and current progress. Mol Biomed, 2025. 6(1): p. 3.
  • 57. Raskov, H., et al., Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer, 2021. 124(2): p. 359-367.
  • 58. Mockey, M., et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer gene therapy, 2007. 14(9): p. 802-814.
  • 59. Wang, Y., et al., mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Molecular Therapy, 2018. 26(2): p. 420-434.
  • 60. Butterfield, L.H., et al., Adenovirus MART-1–engineered autologous dendritic cell vaccine for metastatic melanoma. Journal of immunotherapy, 2008. 31(3): p. 294-309.
  • 61. Smithers, M., et al., Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen. Cancer Immunology, Immunotherapy, 2003. 52: p. 41-52.
  • 62. Zoroddu, S. and L. Bagella, Next-Generation mRNA Vaccines in Melanoma: Advances in Delivery and Combination Strategies. Cells, 2025. 14(18): p. 1476.
  • 63. Ho, S.Y., et al., Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals (Basel), 2023. 16(3).
  • 64. Zhou, X., et al., Current Status and Future Directions of Nanoparticulate Strategy for Cancer Immunotherapy. Curr Drug Metab, 2016. 17(8): p. 755-762.
  • 65. Bezbaruah, R., et al., Nanoparticle-Based Delivery Systems for Vaccines. Vaccines, 2022. 10(11): p. 1946.

MELANOMA KANSERİNE KARŞI GELİŞTİRİLEN AŞI ÇALIŞMALARI

Yıl 2025, Cilt: 8 Sayı: 2, 44 - 63, 31.12.2025

Öz

Melanom; melanosit kökenli, yüksek metastatik potansiyeli ve mortalitesi nedeniyle deri kanserleri arasında özel öneme sahip bir malignitedir. Cerrahi, kemoterapi, radyoterapi ve hedefe yönelik tedaviler melanomda kısmi bir başarı sağlasa da tedavi direnci, nüks ve sistemik yan etkiler nedeni ile yeni immünoterapötik yaklaşımlara ihtiyaç devam etmektedir. Kanser aşıları; tümör hücrelerine veya tümörle ilişkili antijenlere karşı özgül humoral ve hücresel immün yanıt oluşturarak tümör yükünü azaltmayı ve nüksü önlemeyi amaçlayan stratejiler olarak öne çıkmaktadır. Bu derlemede, melanom tedavisinde bağışıklık sistemini hedefleyen aşı çalışmalarının güncel durumu; mRNA tabanlı aşılar, dendritik hücre (DC) aşıları ve neoantijen temelli kişiselleştirilmiş aşı stratejileri çerçevesinde kapsamlı olarak incelenmiştir. Literatürde yer alan preklinik hayvan modelleri ve metastatik melanom hastalarını içeren klinik çalışmalar, mRNA ve DC aşılarının CD4⁺ ve CD8⁺ T hücrelerini etkin şekilde aktive edebildiğini, tümör büyümesini yavaşlatabildiğini ve seçilmiş olgularda klinik yanıt sağlayabildiğini göstermektedir. Bununla birlikte, melanomun genetik heterojenliği, immün kaçış mekanizmaları, uygun antijen seçimi, adjuvan ve taşıyıcı sistemlerin optimizasyonu ile üretim ve maliyet süreçleri önemli kısıtlılıklar oluşturmaktadır. Mevcut veriler, melanoma aşılarının özellikle immün kontrol noktası inhibitörleri gibi diğer immünoterapilerle kombine edildiğinde tedaviye anlamlı katkı sağlayabilecek potansiyele sahip olduğunu, ancak bu yaklaşımların rutin klinik kullanıma girebilmesi için daha geniş hasta serilerini içeren, iyi tasarlanmış klinik çalışmalara ihtiyaç bulunduğunu ortaya koymaktadır.

Kaynakça

  • 1. Coşkunpınar, E., et al., Kanser Aşılarının İmmünoterapötik Açıdan Değerlendirilmesi. İzlek Akademik Dergi, 2018. 1(1): p. 1-11.
  • 2. Ozdemır, A., E. Kaplan Serin, and M. Savas, CANCER RISK FACTORS AND PREVENTION IN TURKEY. International Journal of Health Services Research and Policy, 2018. 3(3): p. 143-150.
  • 3. Zahavi, D. and L. Weiner, Monoclonal Antibodies in Cancer Therapy. Antibodies (Basel), 2020. 9(3).
  • 4. Mian, M., et al., Bortezomib, Thalidomide and Lenalidomide: Have They Really Changed the Outcome of Multiple Myeloma? Anticancer Res, 2016. 36(3): p. 1059-65.
  • 5. Lee, C., et al., Historical review of melanoma treatment and outcomes. Clin Dermatol, 2013. 31(2): p. 141-7. 6. Giblin, A.V. and J.M. Thomas, Incidence, mortality and survival in cutaneous melanoma. J Plast Reconstr Aesthet Surg, 2007. 60(1): p. 32-40.
  • 7. Blanchard, T., P.K. Srivastava, and F. Duan, Vaccines against advanced melanoma. Clin Dermatol, 2013. 31(2): p. 179-90.
  • 8. Ribas, A., et al., Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol, 2003. 21(12): p. 2415-32.
  • 9. Palucka, K., H. Ueno, and J. Banchereau, Recent developments in cancer vaccines. J Immunol, 2011. 186(3): p. 1325-31.
  • 10. Akdeniz, M. and B. Yardımcı, Kanser Aşıları. Klinik Tıp Aile Hekimliği, 2016. 8(2): p. 59-69.
  • 11. Mockey, M., et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer Gene Ther, 2007. 14(9): p. 802-14.
  • 12. Slingluff, C.L., Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms. Cancer Immunol Immunother, 1999. 48(7): p. 371-3.
  • 13. Wang, Y., et al., mRNA Vaccine with Antigen-Specific Checkpoint Blockade Induces an Enhanced Immune Response against Established Melanoma. Mol Ther, 2018. 26(2): p. 420-434.
  • 14. Butterfield, L.H., et al., Adenovirus MART-1-engineered autologous dendritic cell vaccine for metastatic melanoma. J Immunother, 2008. 31(3): p. 294-309.
  • 15. Smithers, M., et al., Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen. Cancer Immunol Immunother, 2003. 52(1): p. 41-52.
  • 16. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
  • 17. Preston, B.D., T.M. Albertson, and A.J. Herr, DNA replication fidelity and cancer. Semin Cancer Biol, 2010. 20(5): p. 281-93.
  • 18. Peng, Y., et al., Immune Surveillance and Immune Escape in Cancer: Mechanisms and Immunotherapy. MedComm (2020), 2025. 6(10): p. e70321.
  • 19. Blanchard, T., P.K. Srivastava, and F. Duan, Vaccines against advanced melanoma. Clinics in dermatology, 2013. 31(2): p. 179-190.
  • 20. Lee, C., et al., Historical review of melanoma treatment and outcomes. Clinics in dermatology, 2013. 31(2): p. 141-147.
  • 21. Dakal, T.C., et al., Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (2020), 2024. 5(6): p. e582.
  • 22. Singh, S.R., et al., Exploring the Genetic Orchestra of Cancer: The Interplay Between Oncogenes and Tumor-Suppressor Genes. Cancers, 2025. 17(7): p. 1082.
  • 23. Hernández Borrero, L.J. and W.S. El-Deiry, Tumor suppressor p53: Biology, signaling pathways, and therapeutic targeting. Biochim Biophys Acta Rev Cancer, 2021. 1876(1): p. 188556.
  • 24. Erkal, B., et al., Kanser Aşılarının İmmünoterapötik Açıdan Değerlendirilmesi. Izlek akademik dergi, 2018. 1(1): p. 1-11.
  • 25. Sung, H., et al., Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin, 2021. 71(3): p. 209-249.
  • 26. Ng, C.S., Immunotherapy of Oncovirus-Induced Cancers: A Review on the Development and Efficacy of Targeted Vaccines. Vaccines (Basel), 2025. 13(9).
  • 27. Braga, A., et al., Global Perspectives on HPV Vaccination: Achievements, Challenges, and Lessons from the Brazilian Experience. Vaccines (Basel), 2025. 13(11).
  • 28. Omohwovo, J., et al., Barriers to HPV vaccination and cervical cancer screening in developing countries. Journal of Global Health Science, 2025. 7.
  • 29. Housman, G., et al., Drug resistance in cancer: an overview. Cancers (Basel), 2014. 6(3): p. 1769-92.
  • 30. Serin, E.K., A. Ozdemır, and M. Savas, Cancer risk factors and prevention in Turkey. International Journal of Health Services Research and Policy, 2018. 3(3): p. 143-150.
  • 31. Garbe, C., et al., Skin cancers are the most frequent cancers in fair-skinned populations, but we can prevent them. Eur J Cancer, 2024. 204: p. 114074.
  • 32. Caraviello, C., et al., Melanoma Skin Cancer: A Comprehensive Review of Current Knowledge. Cancers (Basel), 2025. 17(17).
  • 33. Rajpar, S. and J. Marsden, ABC of skin cancer. 2009: John Wiley & Sons.
  • 34. Giblin, A.-V. and J. Thomas, Incidence, mortality and survival in cutaneous melanoma. Journal of plastic, reconstructive & aesthetic surgery, 2007. 60(1): p. 32-40.
  • 35. Zhao, F., et al., Immunotherapy: A new target for cancer cure (Review). Oncol Rep, 2023. 49(5).
  • 36. Şakalar, C., K. İzgi, and H. Canatan, Cancer Immunotherapy and Monoclonal Antibodies. Firat Health Sci J, 2013. 27: p. 105-10.
  • 37. Mian, M., et al., Bortezomib, thalidomide and lenalidomide: Have they really changed the outcome of multiple myeloma? Anticancer research, 2016. 36(3): p. 1059-1065.
  • 38. Cho, D.-Y., et al., Targeting cancer stem cells for treatment of glioblastoma multiforme. Cell transplantation, 2013. 22(4): p. 731-739.
  • 39. Corveleyn, J., et al., The theory and treatment of depression: Towards a dynamic interactionism model. 2013: Routledge.
  • 40. Jaganti, V., S. Das, and T. Sampath, A review on cancer vaccines. Int J Pharma Bio Sci, 2011. 2(3): p. 86-97.
  • 41. Kumar, V.P., et al., Cancer vaccines: a promising role in cancer therapy. Acad J Cancer Res, 2010. 3(2): p. 16-21.
  • 42. Palucka, K., H. Ueno, and J. Banchereau, Recent developments in cancer vaccines. The journal of Immunology, 2011. 186(3): p. 1325-1331.
  • 43. Reuck, V. and A. Sauter, Gene, vaccine and immunotherapies against cancer: New approaches to an old problem-Results of the project “Future development of cancer therapy”. 2007.
  • 44. Menaria, J., S. Kitawat, and V. Verma, Cancer vaccine: an overview. Sch J App Med Sci, 2013. 1: p. 161-171.
  • 45. Becker, M.D., J. Dally, and J. Martini, Cancer vaccine therapies: failures and future opportunities. MD Becker Partners LLC, Newtown, 2010: p. 34-37.
  • 46. Ribas, A., et al., Current developments in cancer vaccines and cellular immunotherapy. Journal of clinical oncology, 2003. 21(12): p. 2415-2432.
  • 47. Barrios, Y., et al., Anti-idiotypic vaccination in the treatment of low-grade B-cell lymphoma. Haematologica, 2002. 87(4): p. 400-407.
  • 48. Clark, J.R. and J.B. March, Bacteriophages and biotechnology: vaccines, gene therapy and antibacterials. Trends in biotechnology, 2006. 24(5): p. 212-218.
  • 49. Guo, C., et al., Therapeutic cancer vaccines: past, present, and future. Advances in cancer research, 2013. 119: p. 421-475.
  • 50. Gąbka-Buszek, A., et al., Novel Genetic Melanoma Vaccines Based on Induced Pluripotent Stem Cells or Melanosphere-Derived Stem-Like Cells Display High Efficacy in a Murine Tumor Rejection Model. Vaccines (Basel), 2020. 8(2).
  • 51. Canoui-Poitrine, F., et al., Identification of three hidradenitis suppurativa phenotypes: latent class analysis of a cross-sectional study. Journal of Investigative Dermatology, 2013. 133(6): p. 1506-1511.
  • 52. Luke, J.J. and P.A. Ott, New developments in the treatment of metastatic melanoma - role of dabrafenib-trametinib combination therapy. Drug Healthc Patient Saf, 2014. 6: p. 77-88.
  • 53. Parmiani, G., et al., Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst, 2002. 94(11): p. 805-18.
  • 54. Slingluff, C.L., Targeting unique tumor antigens and modulating the cytokine environment may improve immunotherapy for tumors with immune escape mechanisms. Cancer Immunology, Immunotherapy, 1999. 48: p. 371-373.
  • 55. Srivastava, P.K. Do human cancers express sharedprotectiveantigens? or The necessity of remembrance of things past. in Seminars in Immunology. 1996. Elsevier.
  • 56. Lei, W., et al., Cancer vaccines: platforms and current progress. Mol Biomed, 2025. 6(1): p. 3.
  • 57. Raskov, H., et al., Cytotoxic CD8(+) T cells in cancer and cancer immunotherapy. Br J Cancer, 2021. 124(2): p. 359-367.
  • 58. Mockey, M., et al., mRNA-based cancer vaccine: prevention of B16 melanoma progression and metastasis by systemic injection of MART1 mRNA histidylated lipopolyplexes. Cancer gene therapy, 2007. 14(9): p. 802-814.
  • 59. Wang, Y., et al., mRNA vaccine with antigen-specific checkpoint blockade induces an enhanced immune response against established melanoma. Molecular Therapy, 2018. 26(2): p. 420-434.
  • 60. Butterfield, L.H., et al., Adenovirus MART-1–engineered autologous dendritic cell vaccine for metastatic melanoma. Journal of immunotherapy, 2008. 31(3): p. 294-309.
  • 61. Smithers, M., et al., Clinical response after intradermal immature dendritic cell vaccination in metastatic melanoma is associated with immune response to particulate antigen. Cancer Immunology, Immunotherapy, 2003. 52: p. 41-52.
  • 62. Zoroddu, S. and L. Bagella, Next-Generation mRNA Vaccines in Melanoma: Advances in Delivery and Combination Strategies. Cells, 2025. 14(18): p. 1476.
  • 63. Ho, S.Y., et al., Current Trends in Neoantigen-Based Cancer Vaccines. Pharmaceuticals (Basel), 2023. 16(3).
  • 64. Zhou, X., et al., Current Status and Future Directions of Nanoparticulate Strategy for Cancer Immunotherapy. Curr Drug Metab, 2016. 17(8): p. 755-762.
  • 65. Bezbaruah, R., et al., Nanoparticle-Based Delivery Systems for Vaccines. Vaccines, 2022. 10(11): p. 1946.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Derleme
Yazarlar

Sanem Oymak

Feyza Yavuz

Sara Azra Kuran

Kaan Zıkşahna 0009-0001-3478-9754

Zeynep Yaren Dinçer 0009-0003-9733-5607

Rumeysa Adıyıl 0009-0006-5494-2556

Murat Ihlamur 0000-0002-0458-5638

Gönderilme Tarihi 30 Kasım 2025
Kabul Tarihi 31 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 2

Kaynak Göster

APA Oymak, S., Yavuz, F., Kuran, S. A., … Zıkşahna, K. (2025). MELANOMA KANSERİNE KARŞI GELİŞTİRİLEN AŞI ÇALIŞMALARI. Biruni Sağlık ve Eğitim Bilimleri Dergisi, 8(2), 44-63.