Derleme
BibTex RIS Kaynak Göster

A Class of Plant hormones with Different Properties and Special Aspects: Strigolactones

Yıl 2023, , 648 - 657, 15.10.2023
https://doi.org/10.34248/bsengineering.1274465

Öz

The structural change and function of a multicellular plant depend on the relationship between the cells of the organism. At the present, it is known that in high plants, the coordination and regulation of morphogenesis, growth and metabolism are provided by signals transmitted from one part of the plant to another. These signalling molecules are called hormones. Hormones are natural substances that are produced within an organism and play a significant role in regulating growth and other related physiological activities. They are transported to various parts of the organism from where they are synthesized, exerting their effects even at very low concentrations. Through various studies, researchers have identified specific hormones in plants that carry out specific functions and interact with each other. Strigolactone is also a new class of plant hormones that emerges as important signals in the control of plant structure. Strigolactones have the ability to stimulate seed germination in the Orobanchaceae family species, while it is thought to increase nodulation in many other families. Indeed, delving into topics such as the molecular structure of strigolactones, their functions, their biosynthesis within plants, and their interactions with other hormones will greatly contribute to a better comprehension of this group of hormones.

Kaynakça

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr E. M, Greb T. 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. National Acad Sci United States of America, 108(50): 20242-20247.
  • Al-Babili S, Bouwmeester HJ. 2015. Strigolactones a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 66: 161-186.
  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. 2012. The path from β-carotene to carlactone a strigolactone-like plant hormone. Science 335(6074): 1348-1351. https://doi.org/10.1126/SCIENCE.1218094.
  • Arite T, Kameoka H, Kyozuka J. 2012. Strigolactone positively controls crown root elongation in rice. J Plant Growth Regul, 31(2): 165-172. https://doi.org/10.1007/S00344-011-9228-6/FIGURES/5.
  • Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L. 2018. Fungal endophytes: Beyond herbivore management. Front Microbiology 9(MAR): 544. https://doi.org/10.3389/FMICB.2018.00544/BIBTEX.
  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol, 4(7): e226. https://doi.org/10.1371/J.PBIO.0040226.
  • Bonhomme S, Guillory A. 2022. Synthesis and signalling of strigolactone and KAI2-ligand signals in bryophytes. J Experimental Botany, 73(13): 4487-4495. https://doi.org/10.1093/JXB/ERAC186.
  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH. 2003. Secondary metabolite signalling in host–parasitic plant interactions. Current Opinion Plant Biol, 6(4): 358-364. https://doi.org/10.1016/S1369-5266(03)00065-7.
  • Boyer FD, Germain A, de Saint Pillot JP, Pouvreau JB, Chen VX, Ramos S, Stévenin A, Simier P, Delavault P, Beau JM, Rameau C. 2012. Structure-Activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol, 159(4): 1524-1544. https://doi.org/10.1104/PP.112.195826.
  • Brewer PB, Koltai H, Beveridge CA. 2013. Diverse roles of strigolactones in plant development. Molec Plant, 6(1): 18-28. https://doi.org/10.1093/MP/SSS130.
  • Cook CE, Whichard LP, Turner B, Wall M. E, Egley G. H. 1966. Germination of Witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Sci, 154(3753): 1189-1190. https://doi.org/10.1126/SCIENCE.154.3753.1189.
  • Dun EA, De Saint Germain A, Rameau C, Beveridge CA. 2013. Dynamics of strigolactone function and shoot branching responses in pisum sativum. Molec Plant, 6(1): 128-140. https://doi.org/10.1093/MP/SSS131.
  • Foo E, Davies NW. 2011. Strigolactones promote nodulation in pea. Planta 234(5): 1073-1081. https://doi.org/10.1007/S00425-011-1516-7/FIGURES/4.
  • Foo E, Yoneyama K, Hugill C, Quittenden LJ, Reid JB. 2013. Strigolactones. https://doi.org/10.4161/psb.23168 8(3). https://doi.org/10.4161/PSB.23168.
  • Fridlender M, Kapulnik Y, Koltai H. 2015. Plant derived substances with anti-cancer activity: From folklore to practice. Frontiers in Plant Sci, 6(OCTOBER): 799. https://doi.org/10.3389/FPLS.2015.00799/BIBTEX.
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF. 2008. Strigolactone inhibition of shoot branching. Nature, 455(7210): 189-194. https://doi.org/10.1038/nature07271.
  • Gould SB, Waller RF, McFadden GI. 2008. Plastid evolution. Annu Rev Plant Biol, 59: 491-517.
  • Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP. 2016. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology 7(JUN): 906. https://doi.org/10.3389/FMICB.2016.00906/BIBTEX.
  • Kodama K, Rich M. K, Yoda A, Shimazaki S, Xie X, Akiyama K, Mizuno Y, Komatsu A, Luo Y, Suzuki H, Kameoka H, Libourel C, Keller J, Sakakibara K, Nishiyama T, Nakagawa T, Mashiguchi K, Uchida K, Yoneyama K, … Kyozuka J. 2022. An ancestral function of strigolactones as symbiotic rhizosphere signals. Nature Commun, 13(1): 1-15. https://doi.org/10.1038/s41467-022-31708-3.
  • Kurt B, Ozleyen A, Antika G, Yilmaz YB, Tumer TB. 2020. Multitarget profiling of a strigolactone analogue for early events of alzheimer’s disease: in vitro therapeutic activities against neuroinflammation. ACS Chemical Neurosci, 11(4): 501-507. https://doi.org/10.1021/ACSCHEMNEURO.9B00694/SUPPL_FILE/CN9B00694_SI_001.PDF.
  • Li CJ, Bangerth F. 1999. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum): plants and its relationship to correlative dominance. Physiologia Plantarum, 106(4): 415-420. https://doi.org/10.1034/J.1399-3054.1999.106409.X.
  • López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ. 2011. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol, 168(3): 294-297. https://doi.org/10.1016/J.JPLPH.2010.08.011.
  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ. 2005. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway. Plant Physiol, 139(2): 920-934. https://doi.org/10.1104/PP.105.061382.
  • Modi S, Yaluri N, Kokkola T. 2018. Strigolactone GR24 and pinosylvin attenuate adipogenesis and inflammation of white adipocytes. Biochemical and Biophysical Research Communications 499(2): 164-169. https://doi.org/10.1016/J.BBRC.2018.03.095.
  • Mwakaboko AS, Zwanenburg B. 2011. Single step synthesis of strigolactone analogues from cyclic keto enols germination stimulants for seeds of parasitic weeds. Bioorganic Med Chem, 19(16): 5006-5011. https://doi.org/10.1016/J.BMC.2011.06.057.
  • Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park S. H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T. 2013. Molecular mechanism of strigolactone perception by DWARF14. Nature Commun, 4(1): 1-10. https://doi.org/10.1038/ncomms3613.
  • Nefkens GHL, Thuring JWJF, Beenakkers MFM, Zwanenburg B. 1997. Synthesis of a Phthaloylglycine-Derived Strigol Analogue and Its Germination Stimulatory Activity toward Seeds of the Parasitic Weeds Striga hermonthica and Orobanche crenata. J Agri Food Chem, 45(6): 2273-2277. https://doi.org/10.1021/JF9604504.
  • Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiol, 6(10): 763-775. https://doi.org/10.1038/nrmicro1987.
  • Pollock CB, Koltai H, Kapulnik Y, Prandi C, Yarden RI. 2012. Strigolactones: A novel class of phytohormones that inhibit the growth and survival of breast cancer cells and breast cancer stem-like enriched mammosphere cells. Breast Cancer Res Treatment, 134(3): 1041-1055. https://doi.org/10.1007/S10549-012-1992-X/FIGURES/11.
  • Pollock CB, McDonough S, Wang VS, Lee H, Ringer L, Li X, Prandi C, Lee RJ, Feldman AS, Koltai H, Kapulnik Y, Rodriguez OC, Schlegel R, Albanese C, Yarden RI. 2014. Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogramed primary prostate cancer cells. Oncotarget, 5(6): 1683. https://doi.org/10.18632/ONCOTARGET.1849.
  • Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from acer ginnala maxim. in an artificial plantation: media effect and tissue-dependent variation. PLOS ONE, 7(10): e46785. https://doi.org/10.1371/J.PONE.0046785.
  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ. 2008. Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones): for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem, 46(7): 617-626. https://doi.org/10.1016/J.PLAPHY.2008.04.012.
  • Requena N, Serrano E, Ocón A, Breuninger M. 2007. Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochem, 68(1): 33-40. https://doi.org/10.1016/J.PHYTOCHEM.2006.09.036.
  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology of strigolactones. Trends Plant Sci, 18(2): 72-83. https://doi.org/10.1016/J.TPLANTS.2012.10.003.
  • Sandmann G. 2002. Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiologia Plantarum, 116(4): 431-440. https://doi.org/10.1034/J.1399-3054.2002.1160401.X.
  • Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM. 2013. Carlactone-independent seedling morphogenesis in Arabidopsis. The Plant J, 76(1): 1-9. https://doi.org/10.1111/TPJ.12265.
  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S. 2014. Carlactone is an endogenous biosynthetic precursor for strigolactones. National Academy Sci United States of America, 111(4): 1640-1645. https://doi.org/10.1073/PNAS.1314805111/SUPPL_FILE/PNAS.201314805SI.PDF.
  • Shindo M, Shimomura K, Yamaguchi S, Umehara M. 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct, 2(4): e00050. https://doi.org/10.1002/PLD3.50.
  • Smith JE. 2009. Mycorrhizal symbiosis. Soil Sci Soc America J, 73(2): 694-694. https://doi.org/10.2136/SSSAJ2008.0015BR
  • Smith SM. 2014. Q&A: What are strigolactones and why are they important to plants and soil microbes? BMC Biol, 12(1): 1-7. https://doi.org/10.1186/1741-7007-12-19/FIGURES/6.
  • Smith SM, Waters M. T. 2012. Strigolactones: Destruction-dependent perception? Current Biol, 22(21): R924-R927. https://doi.org/10.1016/J.CUB.2012.09.016.
  • Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H. 2010. First indications for the involvement of strigolactones on nodule formation in alfalfa Medicago sativa. Soil Biol Biochem, 42(2): 383-385. https://doi.org/10.1016/J.SOILBIO.2009.11.007.
  • Tang J, Chu C. 2020. Strigolactone signaling: repressor proteins are transcription factors. Trends Plant Sci, 25(10): 960-963. https://doi.org/10.1016/J.TPLANTS.2020.07.002.
  • Timmis JN, Ayliff MA, Huang CY, Martin W. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev Genet, 5(2): 123-135. https://doi.org/10.1038/nrg1271
  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210): 195-200. https://doi.org/10.1038/nature07272.
  • Waldie T, McCulloch H, Leyser O. 2014. Strigolactones and the control of plant development: lessons from shoot branching. The Plant J, 79(4): 607-622. https://doi.org/10.1111/TPJ.12488.
  • Walker CH, Siu-Ting K, Taylor A, O’Connell MJ, Bennett T. 2019. Strigolactone synthesis is ancestral in land plants but canonical strigolactone signalling is a flowering plant innovation. BMC Biol, 17(1): 70. https://doi.org/10.1186/S12915-019-0689-6/FIGURES/9.
  • Walters DR, Havis ND, Oxley SJP. 2008. Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiol Letters, 279(1): 1-7. https://doi.org/10.1111/J.1574-6968.2007.00986.X.
  • Wang Q, Smith SM, Huang J. 2022. Origins of strigolactone and karrikin signaling in plants. Trends Plant Sci, 27(5): 450-459. https://doi.org/10.1016/j.tplants.2021.11.009.
  • Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. 2013. Strigolactone/MAX2-Induced degradation of brassinosteroid transcriptional effector bes1 regulates shoot branching. Develop Cell, 27(6): 681-688. https://doi.org/10.1016/J.DEVCEL.2013.11.010.
  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. 2012. Endophytic fungi produce gibberellins and ındoleacetic acid and promotes host-plant growth during stress. Molecules, 17(9): 10754-10773. https://doi.org/10.3390/MOLECULES170910754.
  • Waters MT, Gutjahr C, Bennett T, Nelson DC. 2017. Strigolactone signaling and evolution. Annu Rev Plant Biol, 68: 291-322.
  • Xie X, Yoneyama K, Yoneyama K. 2010. The strigolactone story. Annu Rev Phytopathol, 48: 93-117.
  • Yoneyama K. 2019. How Do Strigolactones ameliorate nutrient deficiencies in plants? Cold Spring Harbor Perspect Biol, 11(8): a034686.
  • Yoneyama K, Brewer PB. 2021. Strigolactones how are they synthesized to regulate plant growth and development? Current Opinion Plant Biol, 63: 102072. https://doi.org/10.1016/J.PBI.2021.102072.
  • Yoneyama K, Xie X, Kim H. Il Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. 2012. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 235(6): 1197-1207. https://doi.org/10.1007/S00425-011-1568-8/FIGURES/4.
  • Yoneyama K, Xie X, Nomura T, Yoneyama K. 2020. Do phosphate and cytokinin interact to regulate strigolactone biosynthesis or act independently? Frontiers Plant Sci, 11: 438. https://doi.org/10.3389/FPLS.2020.00438/BIBTEX.
  • Zwanenburg B, Blanco-Ania D. 2018. Strigolactones: new plant hormones in the spotlight. J Experimental Botany, 69(9): 2205-2218. https://doi.org/10.1093/JXB/ERX487.
  • Zwanenburg B, Nayak S. K, Charnikhova TV, Bouwmeester HJ. 2013. New strigolactone mimics: Structure–activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorganic Med Chem Letters, 23(18): 5182-5186. https://doi.org/10.1016/J.BMCL.2013.07.004.
  • Zwanenburg B, Pospíšil T. 2013. Structure and activity of strigolactones: New plant hormones with a rich future. Molec Plant 6(1): 38-62. https://doi.org/10.1093/MP/SSS141.

Farklı Özellikleri ve Özel Yönleri ile Bir Bitki Hormonları Grubu: Strigolaktonlar

Yıl 2023, , 648 - 657, 15.10.2023
https://doi.org/10.34248/bsengineering.1274465

Öz

Çok hücreli bir bitkinin yapısal değişimi ve fonksiyonu, organizmayı oluşturan hücreler arasındaki ilişkiye bağlıdır. Yüksek bitkilerde morfogenez, büyüme, metabolizmanın koordinasyonu ve düzenlenmesi, bitkinin bir kısmından diğer kısmına taşınan sinyal molekülleri ile sağlanmaktadır. Bitkiler, çeşitli sinyal molekülleri tarafından büyük ölçüde düzenlenen fizyolojik ve gelişimsel değişiklikler yoluyla çevresel tepkilere yanıt verir. Bu moleküller bitki büyüme düzenleyicileridir. Bitki büyüme düzenleyicileri, organizmalarda doğal olarak sentezlenen, büyüme ile buna bağlı diğer fizyolojik faaliyetleri kontrol eden ve sentezlendiği yerden diğer kısımlara taşınıp, etkinliğini orada ve çok düşük konsantrasyonlarda gösteren organik maddelerdir. Yapılan çalışmalarla bitkilerde belirli işlevleri gerçekleştiren ve birbirleri ile etkileşim halinde olan birçok bitki büyüme düzenleyicileri belirlenmiştir. Strigolaktonlar da bitki yapısının kontrolünde önemli sinyaller olarak ortaya çıkan bitki büyüme düzenleyicilerinin yeni bir sınıfıdır. Strigolaktonlar, Orobanchaceae familyası türlerinde, tohum çimlenmesini uyarabilme yeteneğine sahipken, diğer birçok familyada da nodülasyonu arttırdığı düşünülmektedir. Nitekim, strigolaktonların moleküler yapısı, strigolaktonların görevleri, strigolaktonların bitki tarafından üretilmesi ve strigolaktonların diğer hormonlarla etkileşimleri konuları bu hormon grubunun daha iyi anlaşılmasını sağlayacaktır.

Kaynakça

  • Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, Brewer PB, Beveridge CA, Sieberer T, Sehr E. M, Greb T. 2011. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. National Acad Sci United States of America, 108(50): 20242-20247.
  • Al-Babili S, Bouwmeester HJ. 2015. Strigolactones a novel carotenoid-derived plant hormone. Annu Rev Plant Biol, 66: 161-186.
  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S. 2012. The path from β-carotene to carlactone a strigolactone-like plant hormone. Science 335(6074): 1348-1351. https://doi.org/10.1126/SCIENCE.1218094.
  • Arite T, Kameoka H, Kyozuka J. 2012. Strigolactone positively controls crown root elongation in rice. J Plant Growth Regul, 31(2): 165-172. https://doi.org/10.1007/S00344-011-9228-6/FIGURES/5.
  • Bamisile BS, Dash CK, Akutse KS, Keppanan R, Wang L. 2018. Fungal endophytes: Beyond herbivore management. Front Microbiology 9(MAR): 544. https://doi.org/10.3389/FMICB.2018.00544/BIBTEX.
  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Bécard G, Séjalon-Delmas N. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLOS Biol, 4(7): e226. https://doi.org/10.1371/J.PBIO.0040226.
  • Bonhomme S, Guillory A. 2022. Synthesis and signalling of strigolactone and KAI2-ligand signals in bryophytes. J Experimental Botany, 73(13): 4487-4495. https://doi.org/10.1093/JXB/ERAC186.
  • Bouwmeester HJ, Matusova R, Zhongkui S, Beale MH. 2003. Secondary metabolite signalling in host–parasitic plant interactions. Current Opinion Plant Biol, 6(4): 358-364. https://doi.org/10.1016/S1369-5266(03)00065-7.
  • Boyer FD, Germain A, de Saint Pillot JP, Pouvreau JB, Chen VX, Ramos S, Stévenin A, Simier P, Delavault P, Beau JM, Rameau C. 2012. Structure-Activity relationship studies of strigolactone-related molecules for branching inhibition in garden pea: molecule design for shoot branching. Plant Physiol, 159(4): 1524-1544. https://doi.org/10.1104/PP.112.195826.
  • Brewer PB, Koltai H, Beveridge CA. 2013. Diverse roles of strigolactones in plant development. Molec Plant, 6(1): 18-28. https://doi.org/10.1093/MP/SSS130.
  • Cook CE, Whichard LP, Turner B, Wall M. E, Egley G. H. 1966. Germination of Witchweed (Striga lutea Lour.): Isolation and properties of a potent stimulant. Sci, 154(3753): 1189-1190. https://doi.org/10.1126/SCIENCE.154.3753.1189.
  • Dun EA, De Saint Germain A, Rameau C, Beveridge CA. 2013. Dynamics of strigolactone function and shoot branching responses in pisum sativum. Molec Plant, 6(1): 128-140. https://doi.org/10.1093/MP/SSS131.
  • Foo E, Davies NW. 2011. Strigolactones promote nodulation in pea. Planta 234(5): 1073-1081. https://doi.org/10.1007/S00425-011-1516-7/FIGURES/4.
  • Foo E, Yoneyama K, Hugill C, Quittenden LJ, Reid JB. 2013. Strigolactones. https://doi.org/10.4161/psb.23168 8(3). https://doi.org/10.4161/PSB.23168.
  • Fridlender M, Kapulnik Y, Koltai H. 2015. Plant derived substances with anti-cancer activity: From folklore to practice. Frontiers in Plant Sci, 6(OCTOBER): 799. https://doi.org/10.3389/FPLS.2015.00799/BIBTEX.
  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF. 2008. Strigolactone inhibition of shoot branching. Nature, 455(7210): 189-194. https://doi.org/10.1038/nature07271.
  • Gould SB, Waller RF, McFadden GI. 2008. Plastid evolution. Annu Rev Plant Biol, 59: 491-517.
  • Jia M, Chen L, Xin HL, Zheng CJ, Rahman K, Han T, Qin LP. 2016. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Frontiers in Microbiology 7(JUN): 906. https://doi.org/10.3389/FMICB.2016.00906/BIBTEX.
  • Kodama K, Rich M. K, Yoda A, Shimazaki S, Xie X, Akiyama K, Mizuno Y, Komatsu A, Luo Y, Suzuki H, Kameoka H, Libourel C, Keller J, Sakakibara K, Nishiyama T, Nakagawa T, Mashiguchi K, Uchida K, Yoneyama K, … Kyozuka J. 2022. An ancestral function of strigolactones as symbiotic rhizosphere signals. Nature Commun, 13(1): 1-15. https://doi.org/10.1038/s41467-022-31708-3.
  • Kurt B, Ozleyen A, Antika G, Yilmaz YB, Tumer TB. 2020. Multitarget profiling of a strigolactone analogue for early events of alzheimer’s disease: in vitro therapeutic activities against neuroinflammation. ACS Chemical Neurosci, 11(4): 501-507. https://doi.org/10.1021/ACSCHEMNEURO.9B00694/SUPPL_FILE/CN9B00694_SI_001.PDF.
  • Li CJ, Bangerth F. 1999. Autoinhibition of indoleacetic acid transport in the shoots of two-branched pea (Pisum sativum): plants and its relationship to correlative dominance. Physiologia Plantarum, 106(4): 415-420. https://doi.org/10.1034/J.1399-3054.1999.106409.X.
  • López-Ráez JA, Charnikhova T, Fernández I, Bouwmeester H, Pozo MJ. 2011. Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol, 168(3): 294-297. https://doi.org/10.1016/J.JPLPH.2010.08.011.
  • Matusova R, Rani K, Verstappen FWA, Franssen MCR, Beale MH, Bouwmeester HJ. 2005. The Strigolactone Germination Stimulants of the Plant-Parasitic Striga and Orobanche spp. Are Derived from the Carotenoid Pathway. Plant Physiol, 139(2): 920-934. https://doi.org/10.1104/PP.105.061382.
  • Modi S, Yaluri N, Kokkola T. 2018. Strigolactone GR24 and pinosylvin attenuate adipogenesis and inflammation of white adipocytes. Biochemical and Biophysical Research Communications 499(2): 164-169. https://doi.org/10.1016/J.BBRC.2018.03.095.
  • Mwakaboko AS, Zwanenburg B. 2011. Single step synthesis of strigolactone analogues from cyclic keto enols germination stimulants for seeds of parasitic weeds. Bioorganic Med Chem, 19(16): 5006-5011. https://doi.org/10.1016/J.BMC.2011.06.057.
  • Nakamura H, Xue YL, Miyakawa T, Hou F, Qin HM, Fukui K, Shi X, Ito E, Ito S, Park S. H, Miyauchi Y, Asano A, Totsuka N, Ueda T, Tanokura M, Asami T. 2013. Molecular mechanism of strigolactone perception by DWARF14. Nature Commun, 4(1): 1-10. https://doi.org/10.1038/ncomms3613.
  • Nefkens GHL, Thuring JWJF, Beenakkers MFM, Zwanenburg B. 1997. Synthesis of a Phthaloylglycine-Derived Strigol Analogue and Its Germination Stimulatory Activity toward Seeds of the Parasitic Weeds Striga hermonthica and Orobanche crenata. J Agri Food Chem, 45(6): 2273-2277. https://doi.org/10.1021/JF9604504.
  • Parniske M. 2008. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Reviews Microbiol, 6(10): 763-775. https://doi.org/10.1038/nrmicro1987.
  • Pollock CB, Koltai H, Kapulnik Y, Prandi C, Yarden RI. 2012. Strigolactones: A novel class of phytohormones that inhibit the growth and survival of breast cancer cells and breast cancer stem-like enriched mammosphere cells. Breast Cancer Res Treatment, 134(3): 1041-1055. https://doi.org/10.1007/S10549-012-1992-X/FIGURES/11.
  • Pollock CB, McDonough S, Wang VS, Lee H, Ringer L, Li X, Prandi C, Lee RJ, Feldman AS, Koltai H, Kapulnik Y, Rodriguez OC, Schlegel R, Albanese C, Yarden RI. 2014. Strigolactone analogues induce apoptosis through activation of p38 and the stress response pathway in cancer cell lines and in conditionally reprogramed primary prostate cancer cells. Oncotarget, 5(6): 1683. https://doi.org/10.18632/ONCOTARGET.1849.
  • Qi F, Jing T, Zhan Y. 2012. Characterization of endophytic fungi from acer ginnala maxim. in an artificial plantation: media effect and tissue-dependent variation. PLOS ONE, 7(10): e46785. https://doi.org/10.1371/J.PONE.0046785.
  • Rani K, Zwanenburg B, Sugimoto Y, Yoneyama K, Bouwmeester HJ. 2008. Biosynthetic considerations could assist the structure elucidation of host plant produced rhizosphere signalling compounds (strigolactones): for arbuscular mycorrhizal fungi and parasitic plants. Plant Physiol Biochem, 46(7): 617-626. https://doi.org/10.1016/J.PLAPHY.2008.04.012.
  • Requena N, Serrano E, Ocón A, Breuninger M. 2007. Plant signals and fungal perception during arbuscular mycorrhiza establishment. Phytochem, 68(1): 33-40. https://doi.org/10.1016/J.PHYTOCHEM.2006.09.036.
  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H. 2013. The biology of strigolactones. Trends Plant Sci, 18(2): 72-83. https://doi.org/10.1016/J.TPLANTS.2012.10.003.
  • Sandmann G. 2002. Molecular evolution of carotenoid biosynthesis from bacteria to plants. Physiologia Plantarum, 116(4): 431-440. https://doi.org/10.1034/J.1399-3054.2002.1160401.X.
  • Scaffidi A, Waters MT, Ghisalberti EL, Dixon KW, Flematti GR, Smith SM. 2013. Carlactone-independent seedling morphogenesis in Arabidopsis. The Plant J, 76(1): 1-9. https://doi.org/10.1111/TPJ.12265.
  • Seto Y, Sado A, Asami K, Hanada A, Umehara M, Akiyama K, Yamaguchi S. 2014. Carlactone is an endogenous biosynthetic precursor for strigolactones. National Academy Sci United States of America, 111(4): 1640-1645. https://doi.org/10.1073/PNAS.1314805111/SUPPL_FILE/PNAS.201314805SI.PDF.
  • Shindo M, Shimomura K, Yamaguchi S, Umehara M. 2018. Upregulation of DWARF27 is associated with increased strigolactone levels under sulfur deficiency in rice. Plant Direct, 2(4): e00050. https://doi.org/10.1002/PLD3.50.
  • Smith JE. 2009. Mycorrhizal symbiosis. Soil Sci Soc America J, 73(2): 694-694. https://doi.org/10.2136/SSSAJ2008.0015BR
  • Smith SM. 2014. Q&A: What are strigolactones and why are they important to plants and soil microbes? BMC Biol, 12(1): 1-7. https://doi.org/10.1186/1741-7007-12-19/FIGURES/6.
  • Smith SM, Waters M. T. 2012. Strigolactones: Destruction-dependent perception? Current Biol, 22(21): R924-R927. https://doi.org/10.1016/J.CUB.2012.09.016.
  • Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H. 2010. First indications for the involvement of strigolactones on nodule formation in alfalfa Medicago sativa. Soil Biol Biochem, 42(2): 383-385. https://doi.org/10.1016/J.SOILBIO.2009.11.007.
  • Tang J, Chu C. 2020. Strigolactone signaling: repressor proteins are transcription factors. Trends Plant Sci, 25(10): 960-963. https://doi.org/10.1016/J.TPLANTS.2020.07.002.
  • Timmis JN, Ayliff MA, Huang CY, Martin W. 2004. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nature Rev Genet, 5(2): 123-135. https://doi.org/10.1038/nrg1271
  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S. 2008. Inhibition of shoot branching by new terpenoid plant hormones. Nature, 455(7210): 195-200. https://doi.org/10.1038/nature07272.
  • Waldie T, McCulloch H, Leyser O. 2014. Strigolactones and the control of plant development: lessons from shoot branching. The Plant J, 79(4): 607-622. https://doi.org/10.1111/TPJ.12488.
  • Walker CH, Siu-Ting K, Taylor A, O’Connell MJ, Bennett T. 2019. Strigolactone synthesis is ancestral in land plants but canonical strigolactone signalling is a flowering plant innovation. BMC Biol, 17(1): 70. https://doi.org/10.1186/S12915-019-0689-6/FIGURES/9.
  • Walters DR, Havis ND, Oxley SJP. 2008. Ramularia collo-cygni: the biology of an emerging pathogen of barley. FEMS Microbiol Letters, 279(1): 1-7. https://doi.org/10.1111/J.1574-6968.2007.00986.X.
  • Wang Q, Smith SM, Huang J. 2022. Origins of strigolactone and karrikin signaling in plants. Trends Plant Sci, 27(5): 450-459. https://doi.org/10.1016/j.tplants.2021.11.009.
  • Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X. 2013. Strigolactone/MAX2-Induced degradation of brassinosteroid transcriptional effector bes1 regulates shoot branching. Develop Cell, 27(6): 681-688. https://doi.org/10.1016/J.DEVCEL.2013.11.010.
  • Waqas M, Khan AL, Kamran M, Hamayun M, Kang SM, Kim YH, Lee IJ. 2012. Endophytic fungi produce gibberellins and ındoleacetic acid and promotes host-plant growth during stress. Molecules, 17(9): 10754-10773. https://doi.org/10.3390/MOLECULES170910754.
  • Waters MT, Gutjahr C, Bennett T, Nelson DC. 2017. Strigolactone signaling and evolution. Annu Rev Plant Biol, 68: 291-322.
  • Xie X, Yoneyama K, Yoneyama K. 2010. The strigolactone story. Annu Rev Phytopathol, 48: 93-117.
  • Yoneyama K. 2019. How Do Strigolactones ameliorate nutrient deficiencies in plants? Cold Spring Harbor Perspect Biol, 11(8): a034686.
  • Yoneyama K, Brewer PB. 2021. Strigolactones how are they synthesized to regulate plant growth and development? Current Opinion Plant Biol, 63: 102072. https://doi.org/10.1016/J.PBI.2021.102072.
  • Yoneyama K, Xie X, Kim H. Il Kisugi T, Nomura T, Sekimoto H, Yokota T, Yoneyama K. 2012. How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 235(6): 1197-1207. https://doi.org/10.1007/S00425-011-1568-8/FIGURES/4.
  • Yoneyama K, Xie X, Nomura T, Yoneyama K. 2020. Do phosphate and cytokinin interact to regulate strigolactone biosynthesis or act independently? Frontiers Plant Sci, 11: 438. https://doi.org/10.3389/FPLS.2020.00438/BIBTEX.
  • Zwanenburg B, Blanco-Ania D. 2018. Strigolactones: new plant hormones in the spotlight. J Experimental Botany, 69(9): 2205-2218. https://doi.org/10.1093/JXB/ERX487.
  • Zwanenburg B, Nayak S. K, Charnikhova TV, Bouwmeester HJ. 2013. New strigolactone mimics: Structure–activity relationship and mode of action as germinating stimulants for parasitic weeds. Bioorganic Med Chem Letters, 23(18): 5182-5186. https://doi.org/10.1016/J.BMCL.2013.07.004.
  • Zwanenburg B, Pospíšil T. 2013. Structure and activity of strigolactones: New plant hormones with a rich future. Molec Plant 6(1): 38-62. https://doi.org/10.1093/MP/SSS141.
Toplam 60 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Reviews
Yazarlar

Özge Durmaz 0000-0003-1180-0022

Alper Durmaz 0000-0001-6927-3283

Erdi Can Aytar 0000-0001-6045-0183

Yasemin Özdener Kömpe 0000-0003-1649-4298

Erken Görünüm Tarihi 1 Ekim 2023
Yayımlanma Tarihi 15 Ekim 2023
Gönderilme Tarihi 31 Mart 2023
Kabul Tarihi 17 Ağustos 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Durmaz, Ö., Durmaz, A., Aytar, E. C., Özdener Kömpe, Y. (2023). Farklı Özellikleri ve Özel Yönleri ile Bir Bitki Hormonları Grubu: Strigolaktonlar. Black Sea Journal of Engineering and Science, 6(4), 648-657. https://doi.org/10.34248/bsengineering.1274465
AMA Durmaz Ö, Durmaz A, Aytar EC, Özdener Kömpe Y. Farklı Özellikleri ve Özel Yönleri ile Bir Bitki Hormonları Grubu: Strigolaktonlar. BSJ Eng. Sci. Ekim 2023;6(4):648-657. doi:10.34248/bsengineering.1274465
Chicago Durmaz, Özge, Alper Durmaz, Erdi Can Aytar, ve Yasemin Özdener Kömpe. “Farklı Özellikleri Ve Özel Yönleri Ile Bir Bitki Hormonları Grubu: Strigolaktonlar”. Black Sea Journal of Engineering and Science 6, sy. 4 (Ekim 2023): 648-57. https://doi.org/10.34248/bsengineering.1274465.
EndNote Durmaz Ö, Durmaz A, Aytar EC, Özdener Kömpe Y (01 Ekim 2023) Farklı Özellikleri ve Özel Yönleri ile Bir Bitki Hormonları Grubu: Strigolaktonlar. Black Sea Journal of Engineering and Science 6 4 648–657.
IEEE Ö. Durmaz, A. Durmaz, E. C. Aytar, ve Y. Özdener Kömpe, “Farklı Özellikleri ve Özel Yönleri ile Bir Bitki Hormonları Grubu: Strigolaktonlar”, BSJ Eng. Sci., c. 6, sy. 4, ss. 648–657, 2023, doi: 10.34248/bsengineering.1274465.
ISNAD Durmaz, Özge vd. “Farklı Özellikleri Ve Özel Yönleri Ile Bir Bitki Hormonları Grubu: Strigolaktonlar”. Black Sea Journal of Engineering and Science 6/4 (Ekim 2023), 648-657. https://doi.org/10.34248/bsengineering.1274465.
JAMA Durmaz Ö, Durmaz A, Aytar EC, Özdener Kömpe Y. Farklı Özellikleri ve Özel Yönleri ile Bir Bitki Hormonları Grubu: Strigolaktonlar. BSJ Eng. Sci. 2023;6:648–657.
MLA Durmaz, Özge vd. “Farklı Özellikleri Ve Özel Yönleri Ile Bir Bitki Hormonları Grubu: Strigolaktonlar”. Black Sea Journal of Engineering and Science, c. 6, sy. 4, 2023, ss. 648-57, doi:10.34248/bsengineering.1274465.
Vancouver Durmaz Ö, Durmaz A, Aytar EC, Özdener Kömpe Y. Farklı Özellikleri ve Özel Yönleri ile Bir Bitki Hormonları Grubu: Strigolaktonlar. BSJ Eng. Sci. 2023;6(4):648-57.

                                                24890