Derleme
BibTex RIS Kaynak Göster

Barkhausen Noise as A Magnetic Nondestructive Testing Technique

Yıl 2024, , 785 - 796, 15.07.2024
https://doi.org/10.34248/bsengineering.1391997

Öz

Magnetic Barkhausen Noise (MBN) is a magnetic-based non-destructive electromagnetic testing method. Due to the electromagnetic working principle of MBN, it can be used for ferromagnetic materials, which consist of small magnetic fields discredited by domain walls and oriented in various directions. In an external magnetic field application, the fields turn to the magnetic direction, and the domain walls move and cause magnetic flux jumps. The jumps are named Barkhausen Noise (BN). The domain wall movements are sometimes pushed down by microstructure, composition, and defects. As the magnetic domain walls break away from the pinning sites produce MBN signal. MBN can be used for different material properties such as microstructure, composition, residual stress, and hardness. The paper's purpose is to analyze MBN as an improved NDT, clarify the relationship between material properties and MBN profile, and introduce MBN's applications and test equipment of MBN.

Kaynakça

  • Agarwala VS, Reed PL, Ahmad S. 2000. Corrosion detection and monitoring - a review. Corrosion 2000, March26-31, Orlando, Florida, USA, pp: 272.
  • Alamin M, Tian GY, Andrews A, Jackson P. 2012. Principal component analysis of pulsed eddy current response from corrosion in mild steel. IEEE Sens J, 12(8): 2548-53.
  • Anglada-Rivera J, Padovese LR, Capó-Sánchez J. 2001. Magnetic barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J Magn Magn Mater, 231(2): 299-306.
  • Antunes RA, Ichikawa RU, Martinez LG, Costa I. 2014. Characterization of corrosion products on carbon steel exposed to natural weathering and to accelerated corrosion tests. J Bio Tribocorros, 2014: e419570.
  • Błachnio J, Dutkiewicz J, Salamon A. 2002. The effect of cyclic deformation in a 13% cr ferritic steel on structure and barkhausen noise level. Mater Sci Eng A Struct Mater, 323(1): 83-90.
  • Blaow M, Evans JT, Shaw B. 2004. Effect of deformation in bending on magnetic barkhausen noise in low alloy steel. Mater Sci Eng A Struct Mater, 386(1): 74-80.
  • Blaow M, Evans JT, Shaw BA. 2007. The effect of microstructure and applied stress on magnetic barkhausen emission in induction hardened steel. J Mat Sci, 42(12): 4364-71.
  • Blaow, M, Evans JT, Shaw BA. 2006. Effect of hardness and composition gradients on barkhausen emission in case hardened steel. J Magn Magn Mater, 303(1): 153-59.
  • Blitz J. 2012. Electrical and magnetic methods of non-destructive testing. Springer Science & Business Media, London, UK, pp: 125.
  • Capó-Sánchez J, Pérez-Benitez J A, Padovese L R, Serna-Giraldo C. 2004. Dependence of the magnetic barkhausen emission with carbon content in commercial steels. J Mater Sci, 39(4): 1367-70.
  • Christen R, Bergamini A, Motavalli M. 2009. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges. NDT E Int, 42(1): 22-27.
  • Chung T, Lee JR. 2018. Thickness reconstruction of nuclear power plant pipes with flow-accelerated corrosion damage using laser ultrasonic wavenumber imaging. Struct Health Monit, 17(2): 255-65.
  • Čilliková M, Uríček J, Neslušan M, Ballo V, Mičietová A. 2020. Monitoring of thermal damage after deposition of coatings via barkhausen noise technique. Acta Phys Pol A, 137(5): 637-39.
  • Clapham, L, White S, Lee J, Atherton DL. 2000. Magnetic easy axis development in steel—the influence of manufacturing. J Appl Phys, 88(4): 2163-65.
  • Colwell JD, Babic D. 2012. A review of oxidation on steel surfaces in the context of fire investigations. SAE Inter J Cars - Mechan Syst, 5(2): 1002-15.
  • Cullity BD, Graham CD. 2011. Introduction to magnetic materials. John Wiley & Sons, London, UK, pp: 54.
  • D’Amato C, Verdu C, Kleber X, Regheere G, Vincent A. 2003. Characterization of austempered ductile iron through barkhausen noise measurements. J Nondestr Eval, 22(4): 127-39.
  • Dhar A, Clapham L, Atherton DL. 2001. Influence of uniaxial plastic deformation on magnetic barkhausen noise in steel. NDT E Int, 34(8): 507-14.
  • Durin G, Zapperi S. 2004. The barkhausen effect. Sci Hyster, 2004: 181-267.
  • Fischer P. 2013. Imaging magnetic structures with polarized soft x-rays. Synchrot Radiat News, 26(6): 12-19.
  • Gatelier-Rothea C, Chicois J, Fougeres R, Fleischmann P. 1998. Characterization of pure iron and (130p.p.m.) carbon-iron binary alloy by barkhausen noise measurements: study of the influence of stress and microstructure. Acta Materialia, 46(14): 4873-82.
  • Gauthier J, Krause T W, Atherton DL. 1998. Measurement of residual stress in steel using the magnetic barkhausen noise technique. NDT E Int, 31(1): 23-31.
  • Ghanei S, Alam AS, Kashefi M, Mazinani M. 2014. Nondestructive characterization of microstructure and mechanical properties of intercritically annealed dual-phase steel by magnetic barkhausen noise technique. Mater Sci Eng A Struct Mater, 607:253-60.
  • Govindaraju MR, Strom A, Jiles DC, Biner SB, Chen ZJ. 1993. Evaluation of fatigue damage in steel structural components by magnetoelastic barkhausen signal analysis. Appl Phys Lett, 73(10): 6165-67.
  • Graham DC, Chikazumi S. 1997. Physics of ferromagnetism. Calenderon Press, New York, USA. pp: 211-328.
  • Gupta H, Zhang M, Parakka AP. 1997. Barkhausen effect in ground steels. Acta Material, 45(5): 1917-21.
  • Honarvar F, Varvani-Farahani A. 2020. A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, process control. Ultrasonics, 108: 106227.
  • Hucailuk C, Nuñez N, Torres D. 2015. Study by magnetic barkhausen noise of a 1020 steel and 99.9% nickel plate. Proced Mat Sci, 9: 313-18.
  • Iordache VE, Hug E, Buiron N. 2003. Magnetic behavior versus tensile deformation mechanisms in a non-oriented fe-(3 wt.%)si steel. Mater Sci Eng A Struct Mater, 359(1): 62-74.
  • Jagadish C, Clapham L, Atherton DL. 1990. Influence of uniaxial elastic stress on power spectrum and pulse height distribution of surface barkhausen noise in pipeline steel. IEEE Trans Magn, 26(3): 1160-63.
  • Jančula M, Neslušan M, Pastorek F, Pitoňák M, Pata V, Minárik P, Gocál J. 2021. Monitoring of corrosion extent in steel s460mc by the use of magnetic barkhausen noise emission. J Nondestr Eval, 40(3): 69.
  • Jayakumar T, Rao BPC, Mukhopadhyay CK, Viswanath A, Vaidyanathan S. 2012. Advances in electromagnetic nde techniques for characterization of metallic materials. Electromagnetic Nondestructive Evaluation, IOS Press, India, New Delhi, 36th ed., pp: 79-86.
  • Jiles D, Suominen L. 1994. Effects of surface stress on barkhausen effect emissions: model predictions and comparison with x-ray diffraction studies. IEEE Trans Magn, 30(6): 4924-4926.
  • Jiles DC, Garikepati P, Palmer DD. 1989. Evaluation of residual stress in 300m steels using magnetization, barkhausen effect and x-ray diffraction techniques. In: Thompson DO and Chimenti DE, editors. Review of Progress in Quantitative Nondestructive Evaluation. Boston, USA, 8th ed., Part A and Part B., pp: 2081-2087.
  • Kaplan M, Gür CH, Erdogan M. 2007. Characterization of dual-phase steels using magnetic barkhausen noise technique. J Nondestr Eval, 26(2): 79-87.
  • Kemal D, Gür CH. 2008. Manyetik barkhausen gürültüsü yöntemi ile çeliklerde tahribatsız içyapı karakterizasyonu. 3rd International Non-Destructive Testing Symposium and Exhibition, 17-19 April, Istanbul, Türkiye, pp: 243.
  • Kim DW, Kwon D. 2003. Quantification of the barkhausen noise method for the evaluation of time-dependent degradation. J Magn Magn Mater, 257(2): 175-83.
  • Kim HC, Lee HK, Kim C G, Hwang DG. 1992. Barkhausen noise in ferromagnetic metallic glass fe40ni38mo4b18. Appl Phys Lett, 72(8): 3626-33.
  • Kittinan S, Noipitak M, Sae-Tang W. 2019. Detection of corrosion under coated surface by eddy current testing method. 7th International Electrical Engineering Congress (iEECON), Hua Hin, Tailand, pp: 1-4.
  • Kleber X, Hug-Amalric A, Merlin J. 2008. Evaluation of the proportion of phases and mechanical strength of two-phase steels using barkhausen noise measurements: application to commercial dual-phase steel. Metall Mater Trans A Phys Metall Mater Sci, 39(6): 1308-18.
  • Kleber X, Vincent A. 2004. On the role of residual internal stresses and dislocations on barkhausen noise in plastically deformed steel. NDT E Int, 37(6): 439-445.
  • Kocaman E, Kilinç B, Şen Ş, Şen U. 2020. Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniv Müh Mimar Fak Derg, 36(1): 177-90.
  • Koo K M, Yau M Y, Dickon H L. Ng, C. C. H. Lo. 2003. Characterization of pearlite grains in plain carbon steel by barkhausen emission. Mater Sci Eng A Struct Mater, 351(1): 310-15.
  • Krkoška L, Moravčík M, Zgútová K, Neslušan M, Uhričík M, Bahleda F, Pitoňák M. 2020. Investigation of barkhausen noise emission in steel wires subjected to different surface treatments. Coatings, 10(10): 912.
  • Le TM, Benitez JAP, Hernandez JHE, Hallen JM. 2020. Barkhausen noise for non-destructive testing and materials characterization in low carbon steels. In: Manh TL, Benitez JAP, Hernández JHE, López JMH editors. Woodhead Publishing Series in Electronic and Optical Materials Woodhead Publishing, Sawston, UK, pp: 115-146.
  • Leygraf C, Graedel T, Tidblad J, Wallinder IO, Graedel T. 2016. Atmospheric corrosion. Wiley Interscience, New York, USA, 2nd ed., pp: 6-248.
  • Li S, Hu P, Zhao X, Chen K, Li J. 2017. Atmospheric corrosion performance of wire rope sling in a sulfur dioxide-polluted environment. Adv Mech Engin, 9(6): 1-12.
  • Lindgren M, Lepistö T. 2002. Application of barkhausen noise to biaxial residual stress measurements in welded steel tubes. Mat Sci Technol, 18(11): 1369-1376.
  • Lindgren M, Lepistö T. 2003. Effect of cyclic deformation on barkhausen noise in a mild steel. NDT E Int, 36(6): 401-9.
  • Liu H, Zhong J, Ding F, Meng X, Liu C, Cui J. 2022. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system. Constr Build Mater, 317: 125768.
  • Lo CCH, Tang F, Biner SB, Jiles DC. 2000. Effects of fatigue-induced changes in microstructure and stress on domain structure and magnetic properties of fe-c alloys. Appl Phys Lett, 87(9): 6520-22.
  • Malkin S, Guo C. 2008. Grinding technology: theory and application of machining with abrasives. Industrial Press Inc, New York, USA, pp: 231.
  • Manh TL, Benitez JAP, Alberteris M. 2020. Barkhausen noise for nondestructive testing and materials characterization in low-carbon steels. In: Manh TU, Benitez JAP, Hernandez JHE, Lopez JMH, 9 - Future Trend and Applications of Barkhausen Noise, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, New York, USA, pp: 239-253
  • Martin J, Broughton KJ, Giannopolous A, Hardy MSA, Forde MC. 2001. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. NDT E Int, 34(2): 107-13.
  • McMaster RC. 1959. Nondestructive testing handbook. Only edition, Ronald Phillips Ltd, New York, USA, pp: 141.
  • Moorthy V, Shaw BA, Mountford P, Hopkins P. 2005. Magnetic barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised en36 steel. Acta Mater, 53(19): 4997-5006.
  • Moorthy V, Vaidyanathan S, Baldev R, Jayakumar T, Kashyap BP. 2000. Insight into the microstructural characterization of ferritic steels using micromagnetic parameters. Metall Mater Trans A Phys Metall Mater Sci, 31(4): 1053-1065.
  • Moorthy V, Vaidyanathan S, Jayakumar T, Baldev R, Kashyap BP. 1999. Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25cr-1mo steel. Acta Mater, 47(6): 1869-1878.
  • Moorthy V, Vaidyanathan S, Jayakumar T, Baldev R. 1997. Microstructural characterization of quenched and tempered 0.2% carbon steel using magnetic barkhausen noise analysis. J Magn Magn Mater, 171(1): 179-89.
  • Mrowec, S. 1967. On the mechanism of high temperature oxidation of metals and alloys. Corros Sci, 7(9): 563-78.
  • Neslušan M, Bahleda F,Minárik P, Zgútová K, Jambor M. 2019. Non-Destructive monitoring of corrosion extent in steel rope wires via barkhausen noise emission. J Magn Magn Mater, 484: 179-187.
  • Neslušan M, Čížek J, Kolařík K, Minárik P, Čilliková M, Melikhova O. 2017. Monitoring of grinding burn via barkhausen noise emission in case-hardened steel in large-bearing production. J Mater Process Technol, 240:104-17.
  • Paper A, Willcox M, Mysak T. 2000. An introduction to barkhausen noise and its applications. Insight NDT, New York, USA, pp: 63.
  • Pastorek F, Decký M, Neslušan M, Pitoňák M. 2021. Usage of barkhausen noise for assessment of corrosion damage on different low alloyed steels. Appl Sci, 11(22): 10646.
  • Peng-Chi P, Wang CY. 2015. Use of gamma rays in the inspection of steel wire ropes in suspension bridges. NDT E Int, 75: 80-86.
  • Pérez-Benitez JA, Capó-Sánchez J, Anglada-Rivera J, Padovese LR. 2005. a model for the influence of microstructural defects on magnetic barkhausen noise in plain steels. J Magn Magn Mater, 288: 433-42.
  • Ping W, Ji X, Yan X, Zhu L, Wang H, Tian G, Yao E. 2013. Investigation of temperature effect of stress detection based on barkhausen noise. Sens Actuators A Phys, 194: 232-239.
  • Ping W, Zhu S, Tian GY, Wang H, Wilson J, Wang X. 2010. Stress measurement using magnetic barkhausen noise and metal magnetic memory testing. Meas Sci Technol, 21(5): 055703.
  • Piotrowski L, Augustyniak B, Chmielewski M, Landgraf FJG, Sablik MJ. 2009. Impact of plastic deformation on magnetoacoustic properties of fe-2%si alloy. NDT E Int, 42(2): 92-96.
  • Ranjan R, Jiles D, Rastogi P. 1987. magnetic properties of decarburized steels: an investigation of the effects of grain size and carbon content. IEEE Trans Magn, 23(3): 1869-76.
  • Rao A, Singh A. 2019. Failure analysis of stainless steel lanyard wire rope. J Appl Res Technol, 16: 35-40.
  • Rao BPC, Jayakumar T. 2012. Recent trends in electromagnetic nde techniques and future directions. 18th World Conference on Nondestructive Testing, 16-20 April, Durban, South Africa, pp: 1-11.
  • Ruikun W, Zhang H, Yang R, Chen W, Chen G. 2021. Nondestructive testing for corrosion evaluation of metal under coating. J Sensors 2021: e6640406.
  • Sagar S, Palit N, Parida S, Das G, Dobmann DK. Bhattacharya. 2005. Magnetic barkhausen emission to evaluate fatigue damage in a low carbon structural steel. Int J Fatigue, 27(3): 317-22.
  • Santa-aho S, Vippola M, Lepistö T, Lindgren M. 2009. Characterization of case-hardened gear steel by multiparameter barkhausen noise measurements. Insight - Non-Destructive Test Condit Monit, 51(4): 212-16.
  • Santa-aho S, Vippola M, Sorsa A, Leiviskä K, Lindgren M, Lepistö T. 2012. Utilization of barkhausen noise magnetizing sweeps for case-depth detection from hardened steel. NDT E Int, 52: 95-102.
  • Saquet O, Chicois J, Vincent A. 1999. Barkhausen noise from plain carbon steels: analysis of the influence of microstructure. Mater Sci Eng A Struct Mater, 269(1): 73-82.
  • Saquet, O, Tapuleasa D, Chicois J. 1998. Use of barkhausen noise for determination of surface hardened depth. Nondestruct Test Eval, 14(5): 277-292.
  • Schijve J. 2009. Fatigue of structures and materials. Springer, Dordrecht, Netherlands, pp:5 9.
  • Secer M, Uzun ET. 2017. corrosion damage analysis of steel frames considering lateral torsional buckling. Procedia Eng, 171: 1234-1241.
  • Seemuang N, Slatter T. 2017. Using barkhausen noise to measure coating depth of coated high-speed steel. Int J Adv Manuf Technol, 92(1): 247-58.
  • Sipahi LB. 1994. Effects of creep damage, shot peening, case hardening on magnetic barkhausen noise analysis. IEEE Trans Magn, 30(6): 4830-4832.
  • So O, Ek O, Ri T. 2020. Corrosion evaluation on mild steel in different selected media. Inter J Engin Appl Sci Technol, 5(3): 33-38.
  • Sorsa A, Leiviskä K. 2009. An entropy-based approach for the analysis of the barkhausen noise signal. Proceedings of 7th International Conference on Barkhausen Noise and Micromagnetic Testing, July 15-16, Aachen, Germany, pp: 85-96.
  • Sorsa A, Santa-Aho S, Aylott C, Shaw BA, Vippola M, Leiviskä K. 2019. Case depth prediction of nitrided samples with barkhausen noise measurement. Metals, 9(3): 325.
  • Spaldin NA. 2010. Magnetic materials: fundamentals and applications. Cambridge University Press, Cambridge, UK, 2nd ed., pp: 54.
  • Stefanita CG, Atherton DL, Clapham L. 2000a. Plastic versus elastic deformation effects on magnetic barkhausen noise in steel. Acta Mater, 48(13): 3545-3551.
  • Stefanita CG, Clapham L, Atherton DL. 2000b. Subtle changes in magnetic barkhausen noise before the macroscopic elastic limit. J Mater Sci, 35(11): 2675-2681.
  • Stefanita CG, Clapham L, Yi JK, Atherton DL. 2001. Analysis of cold rolled steels of different reduction ratio using the magnetic barkhausen noise technique. J Mater Sci, 36(11): 2795-2799.
  • Stupakov O, Perevertov O, Tomáš I, Skrbek B. 2011. Evaluation of surface decarburization depth by magnetic barkhausen noise technique. J Magn Magn Mater, 323(12): 1692-1697.
  • Tian-Shun D, Ran W, Guo-Lu L, Ming L. 2019. Failure mechanism and acoustic emission signal characteristics of coatings under the condition of impact indentation. High Temp Mat Proces, 38(2019): 601-611.
  • Tullmin M, Roberge PR. 1995. Corrosion of metallic materials. IEEE Trans Reliab, 44(2): 271-78.
  • Tuzun, MY, Yalcin MA, Davut K, Kilicli V. 2023. Nondestructive microstructural characterization of austempered ductile iron. Mat Test, 65(3): 453-65.
  • Vincent A, Pasco L, Morin M, Kleber X, Delnondedieu M. 2005. Magnetic barkhausen noise from strain-induced martensite during low cycle fatigue of 304l austenitic stainless steel. Acta Mater, 53(17): 4579-4591.
  • Wilson JW, Tian GY, Moorthy V, Shaw BA. 2009. Magneto-Acoustic emission and magnetic barkhausen emission for case depth measurement in en36 gear steel. IEEE Trans Magn, 45(1): 177-83.
  • Yamaura S, Furuya Y, Watanabe T. 2001. The effect of grain boundary microstructure on barkhausen noise in ferromagnetic. Mater Acta Mater, 49(15): 3019-27.
  • Yasumitsu T, Hashimoto K, Osawa N. 1996. Nondestructive estimation of fatigue damage for steel by barkhausen noise analysis. NDT E Int, 29(5): 275-80.
  • Yelbay HI. 2008. Tahribatsız yöntemlerle kalıntı gerilim ölçümündeki gelişmeler. 3rd International Non-Destructive Testing Symposium and Exhibition, April 17-19, İstanbul, Türkiye, pp: 1-9.
  • Zhang J, Cho Y, Kim J, Malikov AKu, Kim YH, Yi JH, Li W. 2021. Non-destructive evaluation of coating thickness using water immersion ultrasonic testing. Coatings, 11(11): 1421.
  • Zhang J, Tian GY. 2016. UHF RFID tag antenna-based sensing for corrosion detection & characterization using principal component analysis. IEEE Trans Antennas Propag, 64(10): 4405-14.
  • Zurek S. 2017. Characterisation of soft magnetic materials under rotational magnetisation. Boca Raton: CRC Press, London, UK, 1st ed., pp: 51-268.

Barkhausen Noise as A Magnetic Nondestructive Testing Technique

Yıl 2024, , 785 - 796, 15.07.2024
https://doi.org/10.34248/bsengineering.1391997

Öz

Magnetic Barkhausen Noise (MBN) is a magnetic-based non-destructive electromagnetic testing method. Due to the electromagnetic working principle of MBN, it can be used for ferromagnetic materials, which consist of small magnetic fields discredited by domain walls and oriented in various directions. In an external magnetic field application, the fields turn to the magnetic direction, and the domain walls move and cause magnetic flux jumps. The jumps are named Barkhausen Noise (BN). The domain wall movements are sometimes pushed down by microstructure, composition, and defects. As the magnetic domain walls break away from the pinning sites produce MBN signal. MBN can be used for different material properties such as microstructure, composition, residual stress, and hardness. The paper's purpose is to analyze MBN as an improved NDT, clarify the relationship between material properties and MBN profile, and introduce MBN's applications and test equipment of MBN.

Kaynakça

  • Agarwala VS, Reed PL, Ahmad S. 2000. Corrosion detection and monitoring - a review. Corrosion 2000, March26-31, Orlando, Florida, USA, pp: 272.
  • Alamin M, Tian GY, Andrews A, Jackson P. 2012. Principal component analysis of pulsed eddy current response from corrosion in mild steel. IEEE Sens J, 12(8): 2548-53.
  • Anglada-Rivera J, Padovese LR, Capó-Sánchez J. 2001. Magnetic barkhausen noise and hysteresis loop in commercial carbon steel: influence of applied tensile stress and grain size. J Magn Magn Mater, 231(2): 299-306.
  • Antunes RA, Ichikawa RU, Martinez LG, Costa I. 2014. Characterization of corrosion products on carbon steel exposed to natural weathering and to accelerated corrosion tests. J Bio Tribocorros, 2014: e419570.
  • Błachnio J, Dutkiewicz J, Salamon A. 2002. The effect of cyclic deformation in a 13% cr ferritic steel on structure and barkhausen noise level. Mater Sci Eng A Struct Mater, 323(1): 83-90.
  • Blaow M, Evans JT, Shaw B. 2004. Effect of deformation in bending on magnetic barkhausen noise in low alloy steel. Mater Sci Eng A Struct Mater, 386(1): 74-80.
  • Blaow M, Evans JT, Shaw BA. 2007. The effect of microstructure and applied stress on magnetic barkhausen emission in induction hardened steel. J Mat Sci, 42(12): 4364-71.
  • Blaow, M, Evans JT, Shaw BA. 2006. Effect of hardness and composition gradients on barkhausen emission in case hardened steel. J Magn Magn Mater, 303(1): 153-59.
  • Blitz J. 2012. Electrical and magnetic methods of non-destructive testing. Springer Science & Business Media, London, UK, pp: 125.
  • Capó-Sánchez J, Pérez-Benitez J A, Padovese L R, Serna-Giraldo C. 2004. Dependence of the magnetic barkhausen emission with carbon content in commercial steels. J Mater Sci, 39(4): 1367-70.
  • Christen R, Bergamini A, Motavalli M. 2009. Influence of steel wrapping on magneto-inductive testing of the main cables of suspension bridges. NDT E Int, 42(1): 22-27.
  • Chung T, Lee JR. 2018. Thickness reconstruction of nuclear power plant pipes with flow-accelerated corrosion damage using laser ultrasonic wavenumber imaging. Struct Health Monit, 17(2): 255-65.
  • Čilliková M, Uríček J, Neslušan M, Ballo V, Mičietová A. 2020. Monitoring of thermal damage after deposition of coatings via barkhausen noise technique. Acta Phys Pol A, 137(5): 637-39.
  • Clapham, L, White S, Lee J, Atherton DL. 2000. Magnetic easy axis development in steel—the influence of manufacturing. J Appl Phys, 88(4): 2163-65.
  • Colwell JD, Babic D. 2012. A review of oxidation on steel surfaces in the context of fire investigations. SAE Inter J Cars - Mechan Syst, 5(2): 1002-15.
  • Cullity BD, Graham CD. 2011. Introduction to magnetic materials. John Wiley & Sons, London, UK, pp: 54.
  • D’Amato C, Verdu C, Kleber X, Regheere G, Vincent A. 2003. Characterization of austempered ductile iron through barkhausen noise measurements. J Nondestr Eval, 22(4): 127-39.
  • Dhar A, Clapham L, Atherton DL. 2001. Influence of uniaxial plastic deformation on magnetic barkhausen noise in steel. NDT E Int, 34(8): 507-14.
  • Durin G, Zapperi S. 2004. The barkhausen effect. Sci Hyster, 2004: 181-267.
  • Fischer P. 2013. Imaging magnetic structures with polarized soft x-rays. Synchrot Radiat News, 26(6): 12-19.
  • Gatelier-Rothea C, Chicois J, Fougeres R, Fleischmann P. 1998. Characterization of pure iron and (130p.p.m.) carbon-iron binary alloy by barkhausen noise measurements: study of the influence of stress and microstructure. Acta Materialia, 46(14): 4873-82.
  • Gauthier J, Krause T W, Atherton DL. 1998. Measurement of residual stress in steel using the magnetic barkhausen noise technique. NDT E Int, 31(1): 23-31.
  • Ghanei S, Alam AS, Kashefi M, Mazinani M. 2014. Nondestructive characterization of microstructure and mechanical properties of intercritically annealed dual-phase steel by magnetic barkhausen noise technique. Mater Sci Eng A Struct Mater, 607:253-60.
  • Govindaraju MR, Strom A, Jiles DC, Biner SB, Chen ZJ. 1993. Evaluation of fatigue damage in steel structural components by magnetoelastic barkhausen signal analysis. Appl Phys Lett, 73(10): 6165-67.
  • Graham DC, Chikazumi S. 1997. Physics of ferromagnetism. Calenderon Press, New York, USA. pp: 211-328.
  • Gupta H, Zhang M, Parakka AP. 1997. Barkhausen effect in ground steels. Acta Material, 45(5): 1917-21.
  • Honarvar F, Varvani-Farahani A. 2020. A review of ultrasonic testing applications in additive manufacturing: defect evaluation, material characterization, process control. Ultrasonics, 108: 106227.
  • Hucailuk C, Nuñez N, Torres D. 2015. Study by magnetic barkhausen noise of a 1020 steel and 99.9% nickel plate. Proced Mat Sci, 9: 313-18.
  • Iordache VE, Hug E, Buiron N. 2003. Magnetic behavior versus tensile deformation mechanisms in a non-oriented fe-(3 wt.%)si steel. Mater Sci Eng A Struct Mater, 359(1): 62-74.
  • Jagadish C, Clapham L, Atherton DL. 1990. Influence of uniaxial elastic stress on power spectrum and pulse height distribution of surface barkhausen noise in pipeline steel. IEEE Trans Magn, 26(3): 1160-63.
  • Jančula M, Neslušan M, Pastorek F, Pitoňák M, Pata V, Minárik P, Gocál J. 2021. Monitoring of corrosion extent in steel s460mc by the use of magnetic barkhausen noise emission. J Nondestr Eval, 40(3): 69.
  • Jayakumar T, Rao BPC, Mukhopadhyay CK, Viswanath A, Vaidyanathan S. 2012. Advances in electromagnetic nde techniques for characterization of metallic materials. Electromagnetic Nondestructive Evaluation, IOS Press, India, New Delhi, 36th ed., pp: 79-86.
  • Jiles D, Suominen L. 1994. Effects of surface stress on barkhausen effect emissions: model predictions and comparison with x-ray diffraction studies. IEEE Trans Magn, 30(6): 4924-4926.
  • Jiles DC, Garikepati P, Palmer DD. 1989. Evaluation of residual stress in 300m steels using magnetization, barkhausen effect and x-ray diffraction techniques. In: Thompson DO and Chimenti DE, editors. Review of Progress in Quantitative Nondestructive Evaluation. Boston, USA, 8th ed., Part A and Part B., pp: 2081-2087.
  • Kaplan M, Gür CH, Erdogan M. 2007. Characterization of dual-phase steels using magnetic barkhausen noise technique. J Nondestr Eval, 26(2): 79-87.
  • Kemal D, Gür CH. 2008. Manyetik barkhausen gürültüsü yöntemi ile çeliklerde tahribatsız içyapı karakterizasyonu. 3rd International Non-Destructive Testing Symposium and Exhibition, 17-19 April, Istanbul, Türkiye, pp: 243.
  • Kim DW, Kwon D. 2003. Quantification of the barkhausen noise method for the evaluation of time-dependent degradation. J Magn Magn Mater, 257(2): 175-83.
  • Kim HC, Lee HK, Kim C G, Hwang DG. 1992. Barkhausen noise in ferromagnetic metallic glass fe40ni38mo4b18. Appl Phys Lett, 72(8): 3626-33.
  • Kittinan S, Noipitak M, Sae-Tang W. 2019. Detection of corrosion under coated surface by eddy current testing method. 7th International Electrical Engineering Congress (iEECON), Hua Hin, Tailand, pp: 1-4.
  • Kleber X, Hug-Amalric A, Merlin J. 2008. Evaluation of the proportion of phases and mechanical strength of two-phase steels using barkhausen noise measurements: application to commercial dual-phase steel. Metall Mater Trans A Phys Metall Mater Sci, 39(6): 1308-18.
  • Kleber X, Vincent A. 2004. On the role of residual internal stresses and dislocations on barkhausen noise in plastically deformed steel. NDT E Int, 37(6): 439-445.
  • Kocaman E, Kilinç B, Şen Ş, Şen U. 2020. Krom içeriğinin Fe(18-x)CrxB2 (X=3,4,5) sert dolgu elektrotunda mikroyapı, aşınma ve korozyon davranışı üzerindeki etkisi. Gazi Üniv Müh Mimar Fak Derg, 36(1): 177-90.
  • Koo K M, Yau M Y, Dickon H L. Ng, C. C. H. Lo. 2003. Characterization of pearlite grains in plain carbon steel by barkhausen emission. Mater Sci Eng A Struct Mater, 351(1): 310-15.
  • Krkoška L, Moravčík M, Zgútová K, Neslušan M, Uhričík M, Bahleda F, Pitoňák M. 2020. Investigation of barkhausen noise emission in steel wires subjected to different surface treatments. Coatings, 10(10): 912.
  • Le TM, Benitez JAP, Hernandez JHE, Hallen JM. 2020. Barkhausen noise for non-destructive testing and materials characterization in low carbon steels. In: Manh TL, Benitez JAP, Hernández JHE, López JMH editors. Woodhead Publishing Series in Electronic and Optical Materials Woodhead Publishing, Sawston, UK, pp: 115-146.
  • Leygraf C, Graedel T, Tidblad J, Wallinder IO, Graedel T. 2016. Atmospheric corrosion. Wiley Interscience, New York, USA, 2nd ed., pp: 6-248.
  • Li S, Hu P, Zhao X, Chen K, Li J. 2017. Atmospheric corrosion performance of wire rope sling in a sulfur dioxide-polluted environment. Adv Mech Engin, 9(6): 1-12.
  • Lindgren M, Lepistö T. 2002. Application of barkhausen noise to biaxial residual stress measurements in welded steel tubes. Mat Sci Technol, 18(11): 1369-1376.
  • Lindgren M, Lepistö T. 2003. Effect of cyclic deformation on barkhausen noise in a mild steel. NDT E Int, 36(6): 401-9.
  • Liu H, Zhong J, Ding F, Meng X, Liu C, Cui J. 2022. Detection of early-stage rebar corrosion using a polarimetric ground penetrating radar system. Constr Build Mater, 317: 125768.
  • Lo CCH, Tang F, Biner SB, Jiles DC. 2000. Effects of fatigue-induced changes in microstructure and stress on domain structure and magnetic properties of fe-c alloys. Appl Phys Lett, 87(9): 6520-22.
  • Malkin S, Guo C. 2008. Grinding technology: theory and application of machining with abrasives. Industrial Press Inc, New York, USA, pp: 231.
  • Manh TL, Benitez JAP, Alberteris M. 2020. Barkhausen noise for nondestructive testing and materials characterization in low-carbon steels. In: Manh TU, Benitez JAP, Hernandez JHE, Lopez JMH, 9 - Future Trend and Applications of Barkhausen Noise, Woodhead Publishing Series in Electronic and Optical Materials, Woodhead Publishing, New York, USA, pp: 239-253
  • Martin J, Broughton KJ, Giannopolous A, Hardy MSA, Forde MC. 2001. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. NDT E Int, 34(2): 107-13.
  • McMaster RC. 1959. Nondestructive testing handbook. Only edition, Ronald Phillips Ltd, New York, USA, pp: 141.
  • Moorthy V, Shaw BA, Mountford P, Hopkins P. 2005. Magnetic barkhausen emission technique for evaluation of residual stress alteration by grinding in case-carburised en36 steel. Acta Mater, 53(19): 4997-5006.
  • Moorthy V, Vaidyanathan S, Baldev R, Jayakumar T, Kashyap BP. 2000. Insight into the microstructural characterization of ferritic steels using micromagnetic parameters. Metall Mater Trans A Phys Metall Mater Sci, 31(4): 1053-1065.
  • Moorthy V, Vaidyanathan S, Jayakumar T, Baldev R, Kashyap BP. 1999. Effect of tensile deformation on micromagnetic parameters in 0.2% carbon steel and 2.25cr-1mo steel. Acta Mater, 47(6): 1869-1878.
  • Moorthy V, Vaidyanathan S, Jayakumar T, Baldev R. 1997. Microstructural characterization of quenched and tempered 0.2% carbon steel using magnetic barkhausen noise analysis. J Magn Magn Mater, 171(1): 179-89.
  • Mrowec, S. 1967. On the mechanism of high temperature oxidation of metals and alloys. Corros Sci, 7(9): 563-78.
  • Neslušan M, Bahleda F,Minárik P, Zgútová K, Jambor M. 2019. Non-Destructive monitoring of corrosion extent in steel rope wires via barkhausen noise emission. J Magn Magn Mater, 484: 179-187.
  • Neslušan M, Čížek J, Kolařík K, Minárik P, Čilliková M, Melikhova O. 2017. Monitoring of grinding burn via barkhausen noise emission in case-hardened steel in large-bearing production. J Mater Process Technol, 240:104-17.
  • Paper A, Willcox M, Mysak T. 2000. An introduction to barkhausen noise and its applications. Insight NDT, New York, USA, pp: 63.
  • Pastorek F, Decký M, Neslušan M, Pitoňák M. 2021. Usage of barkhausen noise for assessment of corrosion damage on different low alloyed steels. Appl Sci, 11(22): 10646.
  • Peng-Chi P, Wang CY. 2015. Use of gamma rays in the inspection of steel wire ropes in suspension bridges. NDT E Int, 75: 80-86.
  • Pérez-Benitez JA, Capó-Sánchez J, Anglada-Rivera J, Padovese LR. 2005. a model for the influence of microstructural defects on magnetic barkhausen noise in plain steels. J Magn Magn Mater, 288: 433-42.
  • Ping W, Ji X, Yan X, Zhu L, Wang H, Tian G, Yao E. 2013. Investigation of temperature effect of stress detection based on barkhausen noise. Sens Actuators A Phys, 194: 232-239.
  • Ping W, Zhu S, Tian GY, Wang H, Wilson J, Wang X. 2010. Stress measurement using magnetic barkhausen noise and metal magnetic memory testing. Meas Sci Technol, 21(5): 055703.
  • Piotrowski L, Augustyniak B, Chmielewski M, Landgraf FJG, Sablik MJ. 2009. Impact of plastic deformation on magnetoacoustic properties of fe-2%si alloy. NDT E Int, 42(2): 92-96.
  • Ranjan R, Jiles D, Rastogi P. 1987. magnetic properties of decarburized steels: an investigation of the effects of grain size and carbon content. IEEE Trans Magn, 23(3): 1869-76.
  • Rao A, Singh A. 2019. Failure analysis of stainless steel lanyard wire rope. J Appl Res Technol, 16: 35-40.
  • Rao BPC, Jayakumar T. 2012. Recent trends in electromagnetic nde techniques and future directions. 18th World Conference on Nondestructive Testing, 16-20 April, Durban, South Africa, pp: 1-11.
  • Ruikun W, Zhang H, Yang R, Chen W, Chen G. 2021. Nondestructive testing for corrosion evaluation of metal under coating. J Sensors 2021: e6640406.
  • Sagar S, Palit N, Parida S, Das G, Dobmann DK. Bhattacharya. 2005. Magnetic barkhausen emission to evaluate fatigue damage in a low carbon structural steel. Int J Fatigue, 27(3): 317-22.
  • Santa-aho S, Vippola M, Lepistö T, Lindgren M. 2009. Characterization of case-hardened gear steel by multiparameter barkhausen noise measurements. Insight - Non-Destructive Test Condit Monit, 51(4): 212-16.
  • Santa-aho S, Vippola M, Sorsa A, Leiviskä K, Lindgren M, Lepistö T. 2012. Utilization of barkhausen noise magnetizing sweeps for case-depth detection from hardened steel. NDT E Int, 52: 95-102.
  • Saquet O, Chicois J, Vincent A. 1999. Barkhausen noise from plain carbon steels: analysis of the influence of microstructure. Mater Sci Eng A Struct Mater, 269(1): 73-82.
  • Saquet, O, Tapuleasa D, Chicois J. 1998. Use of barkhausen noise for determination of surface hardened depth. Nondestruct Test Eval, 14(5): 277-292.
  • Schijve J. 2009. Fatigue of structures and materials. Springer, Dordrecht, Netherlands, pp:5 9.
  • Secer M, Uzun ET. 2017. corrosion damage analysis of steel frames considering lateral torsional buckling. Procedia Eng, 171: 1234-1241.
  • Seemuang N, Slatter T. 2017. Using barkhausen noise to measure coating depth of coated high-speed steel. Int J Adv Manuf Technol, 92(1): 247-58.
  • Sipahi LB. 1994. Effects of creep damage, shot peening, case hardening on magnetic barkhausen noise analysis. IEEE Trans Magn, 30(6): 4830-4832.
  • So O, Ek O, Ri T. 2020. Corrosion evaluation on mild steel in different selected media. Inter J Engin Appl Sci Technol, 5(3): 33-38.
  • Sorsa A, Leiviskä K. 2009. An entropy-based approach for the analysis of the barkhausen noise signal. Proceedings of 7th International Conference on Barkhausen Noise and Micromagnetic Testing, July 15-16, Aachen, Germany, pp: 85-96.
  • Sorsa A, Santa-Aho S, Aylott C, Shaw BA, Vippola M, Leiviskä K. 2019. Case depth prediction of nitrided samples with barkhausen noise measurement. Metals, 9(3): 325.
  • Spaldin NA. 2010. Magnetic materials: fundamentals and applications. Cambridge University Press, Cambridge, UK, 2nd ed., pp: 54.
  • Stefanita CG, Atherton DL, Clapham L. 2000a. Plastic versus elastic deformation effects on magnetic barkhausen noise in steel. Acta Mater, 48(13): 3545-3551.
  • Stefanita CG, Clapham L, Atherton DL. 2000b. Subtle changes in magnetic barkhausen noise before the macroscopic elastic limit. J Mater Sci, 35(11): 2675-2681.
  • Stefanita CG, Clapham L, Yi JK, Atherton DL. 2001. Analysis of cold rolled steels of different reduction ratio using the magnetic barkhausen noise technique. J Mater Sci, 36(11): 2795-2799.
  • Stupakov O, Perevertov O, Tomáš I, Skrbek B. 2011. Evaluation of surface decarburization depth by magnetic barkhausen noise technique. J Magn Magn Mater, 323(12): 1692-1697.
  • Tian-Shun D, Ran W, Guo-Lu L, Ming L. 2019. Failure mechanism and acoustic emission signal characteristics of coatings under the condition of impact indentation. High Temp Mat Proces, 38(2019): 601-611.
  • Tullmin M, Roberge PR. 1995. Corrosion of metallic materials. IEEE Trans Reliab, 44(2): 271-78.
  • Tuzun, MY, Yalcin MA, Davut K, Kilicli V. 2023. Nondestructive microstructural characterization of austempered ductile iron. Mat Test, 65(3): 453-65.
  • Vincent A, Pasco L, Morin M, Kleber X, Delnondedieu M. 2005. Magnetic barkhausen noise from strain-induced martensite during low cycle fatigue of 304l austenitic stainless steel. Acta Mater, 53(17): 4579-4591.
  • Wilson JW, Tian GY, Moorthy V, Shaw BA. 2009. Magneto-Acoustic emission and magnetic barkhausen emission for case depth measurement in en36 gear steel. IEEE Trans Magn, 45(1): 177-83.
  • Yamaura S, Furuya Y, Watanabe T. 2001. The effect of grain boundary microstructure on barkhausen noise in ferromagnetic. Mater Acta Mater, 49(15): 3019-27.
  • Yasumitsu T, Hashimoto K, Osawa N. 1996. Nondestructive estimation of fatigue damage for steel by barkhausen noise analysis. NDT E Int, 29(5): 275-80.
  • Yelbay HI. 2008. Tahribatsız yöntemlerle kalıntı gerilim ölçümündeki gelişmeler. 3rd International Non-Destructive Testing Symposium and Exhibition, April 17-19, İstanbul, Türkiye, pp: 1-9.
  • Zhang J, Cho Y, Kim J, Malikov AKu, Kim YH, Yi JH, Li W. 2021. Non-destructive evaluation of coating thickness using water immersion ultrasonic testing. Coatings, 11(11): 1421.
  • Zhang J, Tian GY. 2016. UHF RFID tag antenna-based sensing for corrosion detection & characterization using principal component analysis. IEEE Trans Antennas Propag, 64(10): 4405-14.
  • Zurek S. 2017. Characterisation of soft magnetic materials under rotational magnetisation. Boca Raton: CRC Press, London, UK, 1st ed., pp: 51-268.
Toplam 101 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Bilimi ve Teknolojileri
Bölüm Reviews
Yazarlar

Ömer Adanur 0000-0001-5591-9661

Oğuz Koçar 0000-0002-1928-4301

Ahmet Serdar Güldibi 0000-0001-7021-060X

Engin Kocaman 0000-0001-5617-3064

Erhan Baysal 0000-0002-2767-8722

Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 1 Aralık 2023
Kabul Tarihi 15 Mayıs 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Adanur, Ö., Koçar, O., Güldibi, A. S., Kocaman, E., vd. (2024). Barkhausen Noise as A Magnetic Nondestructive Testing Technique. Black Sea Journal of Engineering and Science, 7(4), 785-796. https://doi.org/10.34248/bsengineering.1391997
AMA Adanur Ö, Koçar O, Güldibi AS, Kocaman E, Baysal E. Barkhausen Noise as A Magnetic Nondestructive Testing Technique. BSJ Eng. Sci. Temmuz 2024;7(4):785-796. doi:10.34248/bsengineering.1391997
Chicago Adanur, Ömer, Oğuz Koçar, Ahmet Serdar Güldibi, Engin Kocaman, ve Erhan Baysal. “Barkhausen Noise As A Magnetic Nondestructive Testing Technique”. Black Sea Journal of Engineering and Science 7, sy. 4 (Temmuz 2024): 785-96. https://doi.org/10.34248/bsengineering.1391997.
EndNote Adanur Ö, Koçar O, Güldibi AS, Kocaman E, Baysal E (01 Temmuz 2024) Barkhausen Noise as A Magnetic Nondestructive Testing Technique. Black Sea Journal of Engineering and Science 7 4 785–796.
IEEE Ö. Adanur, O. Koçar, A. S. Güldibi, E. Kocaman, ve E. Baysal, “Barkhausen Noise as A Magnetic Nondestructive Testing Technique”, BSJ Eng. Sci., c. 7, sy. 4, ss. 785–796, 2024, doi: 10.34248/bsengineering.1391997.
ISNAD Adanur, Ömer vd. “Barkhausen Noise As A Magnetic Nondestructive Testing Technique”. Black Sea Journal of Engineering and Science 7/4 (Temmuz 2024), 785-796. https://doi.org/10.34248/bsengineering.1391997.
JAMA Adanur Ö, Koçar O, Güldibi AS, Kocaman E, Baysal E. Barkhausen Noise as A Magnetic Nondestructive Testing Technique. BSJ Eng. Sci. 2024;7:785–796.
MLA Adanur, Ömer vd. “Barkhausen Noise As A Magnetic Nondestructive Testing Technique”. Black Sea Journal of Engineering and Science, c. 7, sy. 4, 2024, ss. 785-96, doi:10.34248/bsengineering.1391997.
Vancouver Adanur Ö, Koçar O, Güldibi AS, Kocaman E, Baysal E. Barkhausen Noise as A Magnetic Nondestructive Testing Technique. BSJ Eng. Sci. 2024;7(4):785-96.

                                                24890