Araştırma Makalesi
BibTex RIS Kaynak Göster

Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes

Yıl 2024, , 736 - 742, 15.07.2024
https://doi.org/10.34248/bsengineering.1469538

Öz

Aligned arrays of anatase TiO2 nanotubes on a Ti sheet were created by a dual-step electrochemical anodizing treatment and extended calcination step at 400 oC under an ambient atmosphere, as shown in FESEM images. A diffuse reflectance approach was adopted to measure the energy bandgap is 3.42 eV. The nanotubular pattern is utilized to assemble a fast-response UV photodetector as recognized by Metal-Semiconductor-Metal assembly. The photodetector exhibited excellent UV sensitivity, attributed to the anatase phase of the TiO2 nanotube arrays. The photodetection testing confirmed adept detection of UV photon illumination with excellent stability and repeatability. The UV photodetection performance exhibited a current gain value of 6, a response time (Ton) of 0.98, 0.97, and 0.92 seconds, and a recovery time (Toff) of 0.97, 0.95, and 0.94 seconds at a biased potential of 3, 4, and 5 V, respectively. The findings of this research corroborate the promising nature of the UV photodetector fabricated utilizing anatase nanotube arrays, exhibiting its immense potential for applications in the UV spectrum.

Kaynakça

  • Abdalrheem R, Yam F, Ibrahim AR, Lim H, Beh K, Ahmed AA, Oglat AA, Chahrour KM, Farhat OF, Afzal N. 2019. Improvement in photodetection characteristics of graphene/p-Silicon heterojunction photodetector by PMMA/graphene cladding layer. J Electronic Mater, 48: 4064-4072.
  • AlShammari A, Halim M, Yam F, Chahrour K, Raypah M, Kaus N. 2021. The effect of spray cycles on the morphological, structural, and optical properties of rGO thin film deposited using spray pyrolysis technique. Mater Sci Semiconductor Proces, 127: 105655.
  • Aper T, Yam F, Saw K, Beh KP, Chahrour KM. 2021. Atmospheric pressure chemical vapor deposition of indium oxide nanostructured films for photoelectrochemical application. Results Physics, 24: 104187.
  • Chahrour KM, Ahmed NM, Hashim M, Elfadill NG, Bououdina M. 2016. Self-assembly of aligned CuO nanorod arrays using nanoporous anodic alumina template by electrodeposition on Si substrate for IR photodetectors. Sensors Actuators A: Physical, 239: 209-219.
  • Chahrour KM, Ooi PC, Nazeer AA, Al-Hajji LA, Jubu PR, Dee CF, Ahmadipour M, Hamzah AA. 2023. CuO/Cu/rGO nanocomposite anodic titania nanotubes for boosted non-enzymatic glucose biosensors. New J Chem, 47(16): 7890-7902.
  • Chahrour KM, Yam F, Abdalrheem R. 2019. High-performance UV photodetector of anodic rutile TiO2 nanotube arrays. Mater Lett, 248: 161-164.
  • Chahrour KM, Yam F, Eid A, Nazeer AA. 2020b. Enhanced photoelectrochemical properties of hierarchical black TiO2-x nanolaces for Cr (VI) photocatalytic reduction. Int J Hydrogen Energy, 45(43): 22674-22690.
  • Chahrour KM, Yam F, Eid A. 2020a. Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing. Ceramics Int, 46(13): 21471-21481.
  • Chahrour KM, Yam F, Lim H, Abdalrheem R. 2020c. Synthesis of anodic TiO2 nanotube arrays annealed at 700° C for UV photodetector. J Physics: Conf Ser, 1535: 012012.
  • Chahrour KM, Yam F, Samuel JJ, Abdalrheem R, Beh K, Lim H. 2019. Controlled synthesis of vertically aligned honeycomb TiO 2 nanotube arrays: effect of high-temperature annealing on physical properties. Appl Physics A, 125: 1-9.
  • Gong XX, Fei GT, Fu WB, Zhong BN, Gao XD, De Zhang L. 2017. Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time. Appl Surface Sci, 404. 7-11.
  • Ibrahem MA, Verrelli E, Lai KT, Cheng F, O’Neill M. 2023. Effect of atmospheric conditions on ultraviolet photoconductivity of zinc oxide nanoparticles. J Appl Sci Nanotechnol, 3(1): 115-123.
  • Ikreedeegh RR, Hossen MA, Tahir M, Abd Aziz A. 2024. A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications. Coord Chem Rev, 499: 215495.
  • Jubu PR, Chahrour KM, Muhammad A, Landi S, Obaseki O, Igbawua T, Gundu A, Chahul H, Yam F. 2023. Considerations about the determination of optical bandgap from diffuse reflectance spectroscopy using the Tauc plot. J Optics. 2024: 1-11.
  • Jubu PR, Chahrour KM, Yam F, Awoji O, Yusof Y, Choo EB. 2022. Titanium oxide nanotube film decorated with β-Ga2O3 nanoparticles for enhanced water splitting properties. Solar Energy, 235: 152-162.
  • Khudiar SS, Nayef UM, Mutlak FA. 2022. Preparation and characterization of porous silicon for photodetector applications. J Appl Sci Nanotechnol, 2(2): 64-69.
  • Li Z, Li Z, Zuo C, Fang X. 2022. Application of nanostructured TiO2 in UV photodetectors: A review. Adv Mater, 34(28): 2109083.
  • Ng S, Yam FK, Sohimee SN, Beh KP, Tneh SS, Cheong YL, Hassan Z. 2018. Photoelectrochemical ultraviolet photodetector by anodic titanium dioxide nanotube layers. Sensors Actuators A: Physical, 279: 263-271.
  • Rao BM, Roy SC. 2014. Anatase TiO2 nanotube arrays with high temperature stability. RSC Adv, 4(72): 38133-38139.
  • Richter C, Schmuttenmaer CA. 2010. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nature Nanotechnol, 5(11): 769-772.
  • Rosli N, Halim MM, Chahrour KM, Hashim MR. 2020. Incorporation of zinc oxide on macroporous silicon enhanced the sensitivity of macroporous silicon MSM photodetector. ECS J Solid State Sci Technol, 9(10): 105005.
  • Wang L, Yang W, Chong H, Wang L, Gao F, Tian L, Yang Z. 2015. Efficient ultraviolet photodetectors based on TiO 2 nanotube arrays with tailored structures. RSC Adv, 5(65): 52388-52394.
  • Yu A, Zhan S, Qiu L, Wang X, Yang H, Li Y. 2018. Ultraviolet detector with ultrahigh responsivity based on Anatase TiO2 nanotubes array modified with (001) exposed nanofacets. Vacuum, 151: 237-242.
  • Zhang DY, Ge CW, Wang JZ, Zhang TF, Wu YC, Liang FX. 2016. Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl Surface Sci, 387: 1162-1168.
  • Zheng L, Hu K, Teng F, Fang X. 2017. Novel UV–visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small, 13(5): 1602448.
  • Zou J, Zhang Q, Huang K, Marzari N. 2010. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J Physical Chem C, 114(24): 10725-10729.

Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes

Yıl 2024, , 736 - 742, 15.07.2024
https://doi.org/10.34248/bsengineering.1469538

Öz

Aligned arrays of anatase TiO2 nanotubes on a Ti sheet were created by a dual-step electrochemical anodizing treatment and extended calcination step at 400 oC under an ambient atmosphere, as shown in FESEM images. A diffuse reflectance approach was adopted to measure the energy bandgap is 3.42 eV. The nanotubular pattern is utilized to assemble a fast-response UV photodetector as recognized by Metal-Semiconductor-Metal assembly. The photodetector exhibited excellent UV sensitivity, attributed to the anatase phase of the TiO2 nanotube arrays. The photodetection testing confirmed adept detection of UV photon illumination with excellent stability and repeatability. The UV photodetection performance exhibited a current gain value of 6, a response time (Ton) of 0.98, 0.97, and 0.92 seconds, and a recovery time (Toff) of 0.97, 0.95, and 0.94 seconds at a biased potential of 3, 4, and 5 V, respectively. The findings of this research corroborate the promising nature of the UV photodetector fabricated utilizing anatase nanotube arrays, exhibiting its immense potential for applications in the UV spectrum.

Kaynakça

  • Abdalrheem R, Yam F, Ibrahim AR, Lim H, Beh K, Ahmed AA, Oglat AA, Chahrour KM, Farhat OF, Afzal N. 2019. Improvement in photodetection characteristics of graphene/p-Silicon heterojunction photodetector by PMMA/graphene cladding layer. J Electronic Mater, 48: 4064-4072.
  • AlShammari A, Halim M, Yam F, Chahrour K, Raypah M, Kaus N. 2021. The effect of spray cycles on the morphological, structural, and optical properties of rGO thin film deposited using spray pyrolysis technique. Mater Sci Semiconductor Proces, 127: 105655.
  • Aper T, Yam F, Saw K, Beh KP, Chahrour KM. 2021. Atmospheric pressure chemical vapor deposition of indium oxide nanostructured films for photoelectrochemical application. Results Physics, 24: 104187.
  • Chahrour KM, Ahmed NM, Hashim M, Elfadill NG, Bououdina M. 2016. Self-assembly of aligned CuO nanorod arrays using nanoporous anodic alumina template by electrodeposition on Si substrate for IR photodetectors. Sensors Actuators A: Physical, 239: 209-219.
  • Chahrour KM, Ooi PC, Nazeer AA, Al-Hajji LA, Jubu PR, Dee CF, Ahmadipour M, Hamzah AA. 2023. CuO/Cu/rGO nanocomposite anodic titania nanotubes for boosted non-enzymatic glucose biosensors. New J Chem, 47(16): 7890-7902.
  • Chahrour KM, Yam F, Abdalrheem R. 2019. High-performance UV photodetector of anodic rutile TiO2 nanotube arrays. Mater Lett, 248: 161-164.
  • Chahrour KM, Yam F, Eid A, Nazeer AA. 2020b. Enhanced photoelectrochemical properties of hierarchical black TiO2-x nanolaces for Cr (VI) photocatalytic reduction. Int J Hydrogen Energy, 45(43): 22674-22690.
  • Chahrour KM, Yam F, Eid A. 2020a. Water-splitting properties of bi-phased TiO2 nanotube arrays subjected to high-temperature annealing. Ceramics Int, 46(13): 21471-21481.
  • Chahrour KM, Yam F, Lim H, Abdalrheem R. 2020c. Synthesis of anodic TiO2 nanotube arrays annealed at 700° C for UV photodetector. J Physics: Conf Ser, 1535: 012012.
  • Chahrour KM, Yam F, Samuel JJ, Abdalrheem R, Beh K, Lim H. 2019. Controlled synthesis of vertically aligned honeycomb TiO 2 nanotube arrays: effect of high-temperature annealing on physical properties. Appl Physics A, 125: 1-9.
  • Gong XX, Fei GT, Fu WB, Zhong BN, Gao XD, De Zhang L. 2017. Metal-semiconductor-metal infrared photodetector based on PbTe nanowires with fast response and recovery time. Appl Surface Sci, 404. 7-11.
  • Ibrahem MA, Verrelli E, Lai KT, Cheng F, O’Neill M. 2023. Effect of atmospheric conditions on ultraviolet photoconductivity of zinc oxide nanoparticles. J Appl Sci Nanotechnol, 3(1): 115-123.
  • Ikreedeegh RR, Hossen MA, Tahir M, Abd Aziz A. 2024. A comprehensive review on anodic TiO2 nanotube arrays (TNTAs) and their composite photocatalysts for environmental and energy applications: Fundamentals, recent advances and applications. Coord Chem Rev, 499: 215495.
  • Jubu PR, Chahrour KM, Muhammad A, Landi S, Obaseki O, Igbawua T, Gundu A, Chahul H, Yam F. 2023. Considerations about the determination of optical bandgap from diffuse reflectance spectroscopy using the Tauc plot. J Optics. 2024: 1-11.
  • Jubu PR, Chahrour KM, Yam F, Awoji O, Yusof Y, Choo EB. 2022. Titanium oxide nanotube film decorated with β-Ga2O3 nanoparticles for enhanced water splitting properties. Solar Energy, 235: 152-162.
  • Khudiar SS, Nayef UM, Mutlak FA. 2022. Preparation and characterization of porous silicon for photodetector applications. J Appl Sci Nanotechnol, 2(2): 64-69.
  • Li Z, Li Z, Zuo C, Fang X. 2022. Application of nanostructured TiO2 in UV photodetectors: A review. Adv Mater, 34(28): 2109083.
  • Ng S, Yam FK, Sohimee SN, Beh KP, Tneh SS, Cheong YL, Hassan Z. 2018. Photoelectrochemical ultraviolet photodetector by anodic titanium dioxide nanotube layers. Sensors Actuators A: Physical, 279: 263-271.
  • Rao BM, Roy SC. 2014. Anatase TiO2 nanotube arrays with high temperature stability. RSC Adv, 4(72): 38133-38139.
  • Richter C, Schmuttenmaer CA. 2010. Exciton-like trap states limit electron mobility in TiO2 nanotubes. Nature Nanotechnol, 5(11): 769-772.
  • Rosli N, Halim MM, Chahrour KM, Hashim MR. 2020. Incorporation of zinc oxide on macroporous silicon enhanced the sensitivity of macroporous silicon MSM photodetector. ECS J Solid State Sci Technol, 9(10): 105005.
  • Wang L, Yang W, Chong H, Wang L, Gao F, Tian L, Yang Z. 2015. Efficient ultraviolet photodetectors based on TiO 2 nanotube arrays with tailored structures. RSC Adv, 5(65): 52388-52394.
  • Yu A, Zhan S, Qiu L, Wang X, Yang H, Li Y. 2018. Ultraviolet detector with ultrahigh responsivity based on Anatase TiO2 nanotubes array modified with (001) exposed nanofacets. Vacuum, 151: 237-242.
  • Zhang DY, Ge CW, Wang JZ, Zhang TF, Wu YC, Liang FX. 2016. Single-layer graphene-TiO2 nanotubes array heterojunction for ultraviolet photodetector application. Appl Surface Sci, 387: 1162-1168.
  • Zheng L, Hu K, Teng F, Fang X. 2017. Novel UV–visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small, 13(5): 1602448.
  • Zou J, Zhang Q, Huang K, Marzari N. 2010. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays. J Physical Chem C, 114(24): 10725-10729.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektronik,Optik ve Manyetik Malzemeler, Nanofabrikasyon, Büyüme ve Kendi Kendine Kurulum
Bölüm Research Articles
Yazarlar

Khaled M N Chahrour 0000-0002-8799-3468

Yayımlanma Tarihi 15 Temmuz 2024
Gönderilme Tarihi 17 Nisan 2024
Kabul Tarihi 6 Temmuz 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Chahrour, K. M. N. (2024). Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes. Black Sea Journal of Engineering and Science, 7(4), 736-742. https://doi.org/10.34248/bsengineering.1469538
AMA Chahrour KMN. Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes. BSJ Eng. Sci. Temmuz 2024;7(4):736-742. doi:10.34248/bsengineering.1469538
Chicago Chahrour, Khaled M N. “Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes”. Black Sea Journal of Engineering and Science 7, sy. 4 (Temmuz 2024): 736-42. https://doi.org/10.34248/bsengineering.1469538.
EndNote Chahrour KMN (01 Temmuz 2024) Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes. Black Sea Journal of Engineering and Science 7 4 736–742.
IEEE K. M. N. Chahrour, “Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes”, BSJ Eng. Sci., c. 7, sy. 4, ss. 736–742, 2024, doi: 10.34248/bsengineering.1469538.
ISNAD Chahrour, Khaled M N. “Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes”. Black Sea Journal of Engineering and Science 7/4 (Temmuz 2024), 736-742. https://doi.org/10.34248/bsengineering.1469538.
JAMA Chahrour KMN. Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes. BSJ Eng. Sci. 2024;7:736–742.
MLA Chahrour, Khaled M N. “Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes”. Black Sea Journal of Engineering and Science, c. 7, sy. 4, 2024, ss. 736-42, doi:10.34248/bsengineering.1469538.
Vancouver Chahrour KMN. Fast Response UV Photodetector Based on Aligned Arrays of Anodic Anatase TiO2 Nanotubes. BSJ Eng. Sci. 2024;7(4):736-42.

                                                24890