Bone tissue is a structure composed of organic and inorganic components. There are problems with the fracture of bone tissue. The fracture healing and rehabilitation are a long term processes for various reasons. Complications of bone fractures include delayed healing, bone nonunion, and infections. Studies conducted in recent years have directed orthopedic surgeons to cellular therapy and biomaterials. Our study investigated loofah, PRP, and chondrocyte (cartilage cell) scaffolds for in vivo healing. The study was carried out on rabbits randomly divided into 4 groups. Animals were sacrificed 8 weeks after implant surgery by applying high-dose anesthesia. Histological analyses were performed on samples from animals sacrificed in week 8 after implant surgery. Our results showed that loofah+PRP+chondrocyte cell scaffolds are biocompatible and an excellent alternative to remedial engineering.
Alshammari A, Alabdah F, Wang W, Cooper G. 2023. Virtual design of 3D-printed bone tissue engineered scaffold shape using mechanobiological modeling: Relationship of scaffold pore architecture to bone tissue formation. Polymers, 15(19): 3918.
Baysan G, Colpankan Gunes O, Akokay P, Husemoglu RB, Ertugruloglu P, Ziylan Albayrak A, Havitcioglu H. 2022. Loofah-chitosan and poly (−3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) based hydrogel scaffolds for meniscus tissue engineering applications. Int J Biol Macromol, 221: 1171-1183.
Baysan G, Gunes O C, Turemis C, Akokay Yilmaz P, Husemoglu R B, Kara Ozenler A, Cecen B. 2023. Using loofah reinforced chitosan-collagen hydrogel based scaffolds in-vitro and in-vivo; healing in cartilage tissue defects. Materialia, 31: 101881.
Blazquez-Carmona P, Mora-Macías J, Martínez-Vázquez FJ, Morgaz J, Domínguez J, Reina-Romo E. 2023. Mechanics predicts effective critical-size bone regeneration using 3d-printed bioceramic scaffolds. Tissue Eng Regen Med, 20(6): 893-904.
Cao Y, Zhang H, Qiu M, Zheng Y, Shi X, Yang J. 2023. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int J Biol Macromol, 257(Pt 1):128593.
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Ding C. 2023. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules, 28(20): 7039.
Göransson H. 1993. Callus formation after re-injury to experimental bone defect. Arch Orthop Trauma Surg, 112(5): 232-235.
Han W, He W, Yang W, Li J, Yang Z, Lu X, Qian Y. 2016. The osteogenic potential of human bone callus. Sci Rep, 6(1): 36330.
Li H, Hu C, Yu H, Chen C. 2018. Chitosan composite scaffolds for articular cartilage defect repair: A review. RSC Adv, 8(7): 3736-3749.
Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. 2013. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics, 36(11): 868-873.
Liu Q, Liu Z, Guo H, Liang J, Zhang Y. 2022. The progress in quantitative evaluation of callus during distraction osteogenesis. BMC Musculoskeletal Disord, 23(1): 490.
Mito K, Lachnish J, Le W, Chan C, Chang Y L, Yao J 2023. Scaffold-Free Bone Marrow-Derived Mesenchymal Stem Cell Sheets Enhance Bone Formation in a Weight-Bearing Rat Critical Bone Defect Model. Tissue Eng Part A, 30(3-4):107-114.
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Ding J. 2023. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration, 3: 20210043.
Ramzan F, Salim A, Khan I. 2023. Osteochondral tissue engineering dilemma: Scaffolding trends in regenerative medicine. Stem Cell Rev Rep, 19(6): 1615-1634.
Sakeena Q, Makhdoomi DM, Rather SA, Parrah JUD, Dar SH, Gugjoo MB. 2023. Radiographic evaluation of healing potential of stem cell-loaded scaffold in experimental bone defect. SKUAST J Res, 25(3): 506-510.
Sun J, Qin L, Wang D, Zhao H, Gong M, Dong X, Zhou W. 2023. Fabrication of novel printable artificial bone composites used as cartilage scaffolds by an additive manufacturing process. J Appl Polym Sci, 140(43): e54576.
Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Matsuyama Y, Ohtori S. 2020. Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis. Bone, 132: 115212.
Uthgenannt BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ. 2007. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J Bone Miner Res, 22(10): 1548-1556.
Yang F, Li Y, Wang L, Che H, Zhang X, Jahr H, Wang J. 2023. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioact Mater, 32: 400-414.
Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Chen X. 2019. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater, 29(36): 1903279.
Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması
Kemik dokusu organik ve inorganik bileşenlerden oluşan bir yapıdır. Kemik dokusunun kırılmasıyla ilgili sorunlar mevcuttur. Kırığın kaynaması ve rehabilitasyon süreci çeşitli nedenlerden dolayı uzun zaman almaktadır. Yan etkiler arasında kemik kırıklarının iyileşmesinde gecikme, kemiğin kaynamaması ve enfeksiyonlar yer alır. Son yıllarda yapılan çalışmalar ortopedi cerrahlarını hücresel tedaviye ve biyomateryallere yönlendirmiştir. Çalışmamızda kollajen, lif kabağı, PRP ve kondrosit (kıkırdak hücresi) içeren iskeleleri in vivo iyileşme açısından araştırdık. Çalışma rastgele 4 gruba ayrılan 12 adet tavşan üzerinde gerçekleştirildi. Tavşanlar implantasyondan 8 hafta sonra yüksek doz anestezi uygulanarak sakrifiye edildi. Ameliyatından sonra 8. haftada sakrifiye edilen hayvanlardan alınan numuneler üzerinde histolojik analiz yapıldı. Sonuçlarımız lif kabağı+PRP+kondrosit hücre içeren iskelelerinin biyouyumlu olduğunu ve iyileştirme mühendisliğine mükemmel bir alternatif olduğunu gösterdi.
Alshammari A, Alabdah F, Wang W, Cooper G. 2023. Virtual design of 3D-printed bone tissue engineered scaffold shape using mechanobiological modeling: Relationship of scaffold pore architecture to bone tissue formation. Polymers, 15(19): 3918.
Baysan G, Colpankan Gunes O, Akokay P, Husemoglu RB, Ertugruloglu P, Ziylan Albayrak A, Havitcioglu H. 2022. Loofah-chitosan and poly (−3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) based hydrogel scaffolds for meniscus tissue engineering applications. Int J Biol Macromol, 221: 1171-1183.
Baysan G, Gunes O C, Turemis C, Akokay Yilmaz P, Husemoglu R B, Kara Ozenler A, Cecen B. 2023. Using loofah reinforced chitosan-collagen hydrogel based scaffolds in-vitro and in-vivo; healing in cartilage tissue defects. Materialia, 31: 101881.
Blazquez-Carmona P, Mora-Macías J, Martínez-Vázquez FJ, Morgaz J, Domínguez J, Reina-Romo E. 2023. Mechanics predicts effective critical-size bone regeneration using 3d-printed bioceramic scaffolds. Tissue Eng Regen Med, 20(6): 893-904.
Cao Y, Zhang H, Qiu M, Zheng Y, Shi X, Yang J. 2023. Biomimetic injectable and bilayered hydrogel scaffold based on collagen and chondroitin sulfate for the repair of osteochondral defects. Int J Biol Macromol, 257(Pt 1):128593.
Ding Q, Zhang S, Liu X, Zhao Y, Yang J, Chai G, Ding C. 2023. Hydrogel Tissue Bioengineered Scaffolds in Bone Repair: A Review. Molecules, 28(20): 7039.
Göransson H. 1993. Callus formation after re-injury to experimental bone defect. Arch Orthop Trauma Surg, 112(5): 232-235.
Han W, He W, Yang W, Li J, Yang Z, Lu X, Qian Y. 2016. The osteogenic potential of human bone callus. Sci Rep, 6(1): 36330.
Li H, Hu C, Yu H, Chen C. 2018. Chitosan composite scaffolds for articular cartilage defect repair: A review. RSC Adv, 8(7): 3736-3749.
Liu M, Yu X, Huang F, Cen S, Zhong G, Xiang Z. 2013. Tissue engineering stratified scaffolds for articular cartilage and subchondral bone defects repair. Orthopedics, 36(11): 868-873.
Liu Q, Liu Z, Guo H, Liang J, Zhang Y. 2022. The progress in quantitative evaluation of callus during distraction osteogenesis. BMC Musculoskeletal Disord, 23(1): 490.
Mito K, Lachnish J, Le W, Chan C, Chang Y L, Yao J 2023. Scaffold-Free Bone Marrow-Derived Mesenchymal Stem Cell Sheets Enhance Bone Formation in a Weight-Bearing Rat Critical Bone Defect Model. Tissue Eng Part A, 30(3-4):107-114.
Peng Y, Zhuang Y, Liu Y, Le H, Li D, Zhang M, Ding J. 2023. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration, 3: 20210043.
Ramzan F, Salim A, Khan I. 2023. Osteochondral tissue engineering dilemma: Scaffolding trends in regenerative medicine. Stem Cell Rev Rep, 19(6): 1615-1634.
Sakeena Q, Makhdoomi DM, Rather SA, Parrah JUD, Dar SH, Gugjoo MB. 2023. Radiographic evaluation of healing potential of stem cell-loaded scaffold in experimental bone defect. SKUAST J Res, 25(3): 506-510.
Sun J, Qin L, Wang D, Zhao H, Gong M, Dong X, Zhou W. 2023. Fabrication of novel printable artificial bone composites used as cartilage scaffolds by an additive manufacturing process. J Appl Polym Sci, 140(43): e54576.
Suzuki T, Matsuura Y, Yamazaki T, Akasaka T, Ozone E, Matsuyama Y, Ohtori S. 2020. Biomechanics of callus in the bone healing process, determined by specimen-specific finite element analysis. Bone, 132: 115212.
Uthgenannt BA, Kramer MH, Hwu JA, Wopenka B, Silva MJ. 2007. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone. J Bone Miner Res, 22(10): 1548-1556.
Yang F, Li Y, Wang L, Che H, Zhang X, Jahr H, Wang J. 2023. Full-thickness osteochondral defect repair using a biodegradable bilayered scaffold of porous zinc and chondroitin sulfate hydrogel. Bioact Mater, 32: 400-414.
Zhang Y, Liu X, Zeng L, Zhang J, Zuo J, Zou J, Chen X. 2019. Polymer fiber scaffolds for bone and cartilage tissue engineering. Adv Funct Mater, 29(36): 1903279.
Toplam 20 adet kaynakça vardır.
Ayrıntılar
Birincil Dil
Türkçe
Konular
Biyofabrikasyon, Biyomedikal Mühendisliğinde Biyomateryaller, Biyomateryaller, Hayvan Hücre Kültürü ve Doku Mühendisliği
Uzun, B. (2024). Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. Black Sea Journal of Engineering and Science, 7(4), 752-755. https://doi.org/10.34248/bsengineering.1492107
AMA
Uzun B. Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. BSJ Eng. Sci. Temmuz 2024;7(4):752-755. doi:10.34248/bsengineering.1492107
Chicago
Uzun, Bora. “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”. Black Sea Journal of Engineering and Science 7, sy. 4 (Temmuz 2024): 752-55. https://doi.org/10.34248/bsengineering.1492107.
EndNote
Uzun B (01 Temmuz 2024) Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. Black Sea Journal of Engineering and Science 7 4 752–755.
IEEE
B. Uzun, “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”, BSJ Eng. Sci., c. 7, sy. 4, ss. 752–755, 2024, doi: 10.34248/bsengineering.1492107.
ISNAD
Uzun, Bora. “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”. Black Sea Journal of Engineering and Science 7/4 (Temmuz 2024), 752-755. https://doi.org/10.34248/bsengineering.1492107.
JAMA
Uzun B. Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. BSJ Eng. Sci. 2024;7:752–755.
MLA
Uzun, Bora. “Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması”. Black Sea Journal of Engineering and Science, c. 7, sy. 4, 2024, ss. 752-5, doi:10.34248/bsengineering.1492107.
Vancouver
Uzun B. Kemik Kıkırdak Doku Defektlerinde Yeni Tasarlanmış Yapı İskelelerinin Araştırılması. BSJ Eng. Sci. 2024;7(4):752-5.