Araştırma Makalesi
BibTex RIS Kaynak Göster

Bisector Curves of Comformable Curves in R^2

Yıl 2025, Cilt: 8 Sayı: 1, 35 - 36
https://doi.org/10.34248/bsengineering.1549965

Öz

In this work, the bisector curves of two regular comformable curves from C^1-regular parametric category is inspected in R^2. Then, multivariable functions which is corresponded to bisector curves of regular comformable curves are calculated. The bisector curves are procured by two similar paths. As a result, the equations which are corresponded to bisector curves are obtained in R^2.

Kaynakça

  • Anderson DR, Ulness DJ. 2015. Newly defined conformable derivatives. Adv Dyn Syst Appl, 10(2): 109-137.
  • Atangana A, Baleanu D, Alsaedi A. 2015. New properties of conformable derivative. Open Math, 13(1): 889-898.

Bisector Curves of Comformable Curves in R^2

Yıl 2025, Cilt: 8 Sayı: 1, 35 - 36
https://doi.org/10.34248/bsengineering.1549965

Öz

In this work, the bisector curves of two regular comformable curves from C^1-regular parametric category is inspected in R^2. Then, multivariable functions which is corresponded to bisector curves of regular comformable curves are calculated. The bisector curves are procured by two similar paths. As a result, the equations which are corresponded to bisector curves are obtained in R^2.

Kaynakça

  • Anderson DR, Ulness DJ. 2015. Newly defined conformable derivatives. Adv Dyn Syst Appl, 10(2): 109-137.
  • Atangana A, Baleanu D, Alsaedi A. 2015. New properties of conformable derivative. Open Math, 13(1): 889-898.
Toplam 2 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Research Articles
Yazarlar

Şeyda Özel 0000-0002-1519-2418

Mehmet Bektaş 0000-0002-5797-4944

Yayımlanma Tarihi
Gönderilme Tarihi 14 Eylül 2024
Kabul Tarihi 26 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Özel, Ş., & Bektaş, M. (t.y.). Bisector Curves of Comformable Curves in R^2. Black Sea Journal of Engineering and Science, 8(1), 35-36. https://doi.org/10.34248/bsengineering.1549965
AMA Özel Ş, Bektaş M. Bisector Curves of Comformable Curves in R^2. BSJ Eng. Sci. 8(1):35-36. doi:10.34248/bsengineering.1549965
Chicago Özel, Şeyda, ve Mehmet Bektaş. “Bisector Curves of Comformable Curves in R^2”. Black Sea Journal of Engineering and Science 8, sy. 1 t.y.: 35-36. https://doi.org/10.34248/bsengineering.1549965.
EndNote Özel Ş, Bektaş M Bisector Curves of Comformable Curves in R^2. Black Sea Journal of Engineering and Science 8 1 35–36.
IEEE Ş. Özel ve M. Bektaş, “Bisector Curves of Comformable Curves in R^2”, BSJ Eng. Sci., c. 8, sy. 1, ss. 35–36, doi: 10.34248/bsengineering.1549965.
ISNAD Özel, Şeyda - Bektaş, Mehmet. “Bisector Curves of Comformable Curves in R^2”. Black Sea Journal of Engineering and Science 8/1 (t.y.), 35-36. https://doi.org/10.34248/bsengineering.1549965.
JAMA Özel Ş, Bektaş M. Bisector Curves of Comformable Curves in R^2. BSJ Eng. Sci.;8:35–36.
MLA Özel, Şeyda ve Mehmet Bektaş. “Bisector Curves of Comformable Curves in R^2”. Black Sea Journal of Engineering and Science, c. 8, sy. 1, ss. 35-36, doi:10.34248/bsengineering.1549965.
Vancouver Özel Ş, Bektaş M. Bisector Curves of Comformable Curves in R^2. BSJ Eng. Sci. 8(1):35-6.

                                                24890