Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of Waste Tea Ash as A Silica Source in Cementless Geopolymer Composites

Yıl 2025, Cilt: 8 Sayı: 6, 1998 - 2005, 15.11.2025
https://doi.org/10.34248/bsengineering.1795131

Öz

This study investigates the evaluation of waste tea ash (ACK) as a sustainable silica source in metakaolin-based geopolymer composites. To isolate the specific effect of WTA on the geopolymer system, silica fume was replaced with different proportions of ACK while maintaining a constant Si/Al molar ratio (3). The effects of WTC on mechanical behaviour, physical properties, and microstructural evolution were comprehensively investigated through compressive and flexural strength tests, ultrasonic pulse velocity (UPV), water absorption, density measurements, and XRD and FT-IR analyses. The results showed a contradictory mechanical trend: while compressive strength decreased at high ACK content (up to 30.3%), flexural strength improved significantly (up to 38.8% increase). This was attributed to the microfibrous ACK particles acting as crack bridging agents. Despite the observed densification and reduced porosity, 28-day UAH values decreased due to the formation of finer but more discontinuous pores as a result of microstructural refinement. The findings emphasise the dual role of AÇK as both a reactive precursor and a microstructural regulator, demonstrating its potential for developing bend-dominant, environmentally friendly geopolymer materials suitable for non-load-bearing or fire-resistant applications.

Kaynakça

  • Altwair NM, Zeyad AM, Sryh LS, Alsharif AM, Sreh MM. 2024. Accelerated environmental conditions study on palm oil fuel ash-incorporated engineered cementitious composites: A durability assessment approach. Constr Build Mater, 450: 138654. https://doi.org/10.1016/j.conbuildmat.2024.138654
  • Alvarenga KP, Cordeiro GC. 2024. Evaluating sugarcane bagasse fly ash as a sustainable cement replacement for enhanced performance. Cleaner Eng Tech, 20: 100751. https://doi.org/10.1016/j.clet.2024.100751
  • Assaedi H, Alomayri T, Shaikh FUA, Low IM. 2015. Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. J Advan Ceram, 4: 272-281. https://doi.org/10.1007/s40145-015-0161-1
  • ASTM C597-22. 2003. Standard test method for ultrasonic pulse velocity through concrete. ASTM Int. West Conshohocken, US, pp: 4.
  • Bheel N, Kumar S, Kirgiz MS, Ali M, Almujibah HR, Ahmad M, Gonzalez-Lezcano RA. 2024. Effect of wheat straw ash as cementitious material on the mechanical characteristics and embodied carbon of concrete reinforced with coir fiber. Heliyon, 10: e24313. https://doi.org/10.1016/j.heliyon.2024.e24313
  • Cai J, Jiang J, Gao X, Ding M. 2022. Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder. Materials, 15: 2363. https://doi.org/10.3390/ma15072363
  • Caronge MA, Tjaronge MW, Rahim IR, Irmawaty R, Lapian FEP. 2022. Feasibility study on the use of processed waste tea ash as cement replacement for sustainable concrete production. J Build Eng, 52: 104458. https://doi.org/10.1016/j.jobe.2022.104458
  • Dehghani A, Aslani F, Ghaebi Panah N. 2021. Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties. Constr Build Mater, 293: 123527. https://doi.org/10.1016/j.conbuildmat.2021.123527
  • Djamaluddin AR, Caronge MA, Tjaronge MW, Lando AT, Irmawaty R. 2020. Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Stud Constr Mater, 12: e00325. https://doi.org/10.1016/j.cscm.2019.e00325
  • EN 1015-10. 2001. Methods of test for mortar for masonry- Part 10: Determination of dry bulk density of hardened mortar, CEN, Brussels, Belgium, pp: 7.
  • EN 1015-11. 2000. Methods of test for mortar for masonry- Part 11: Determination of flexural and compressive strength of hardened mortar, CEN, Brussels, Belgium, pp: 4.
  • EN 1015-18. 2000. Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar, CEN, Brussels, Belgium, pp: 4.
  • Feng B, Liu J, Chen Y, Zhang M, Tan X. 2022. Investigation on basic properties and durability of metakaolin based geopolymer modified with silane. Poly Comp, 438: 5500-5510. https://doi.org/10.1002/pc.26858
  • Gartner E, Sui T. 2018. Alternative cement clinkers. Cem and Concr Res, 114: 27-39. doi:10.1016/j.cemconres.2017.02.002
  • Jing W, Luo R, Ding S, Duan P. 2022. Influences of Multi-Component Supplementary Cementitious Materials on the Performance of Metakaolin Based Geopolymer. J Renew Mater, 107: 1813-1828. https://doi.org/10.32604/jrm.2022.018771
  • Kaze RC, Beleuk à Moungam LM, Cannio M, Rosa R, Kamseu E, Melo UC, Leonelli C. 2018. Microstructure and engineering properties of Fe2O3FeO-Al2O3-SiO2 based geopolymer composites. J Clean Prod, 199: 849-859. https://doi.org/10.1016/j.jclepro.2018.07.171
  • Kozub B, Bazan P, Mierzwiński D, Korniejenko K. 2021. Fly-ash-based geopolymers reinforced by melamine fibers. Materials, 142: 400. https://doi.org/10.3390/ma14020400
  • Liu J, Doh JH, Ong DEL, Wang S, Yang Y, Dinh HL, Zi G. 2023. Correlation between dissolubilities of Si, Al, and Fe from aluminosilicate precursor and strength of fly ash-based geopolymer. Constr Build Mater, 393: 132107. https://doi.org/10.1016/j.conbuildmat.2023.132107
  • Moraes MJB, Moraes JCB, Tashima MM, Akasaki JL, Soriano L, Borrachero MV, Payá J. 2019. Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Constr Build Mater, 208: 369-380. https://doi.org/10.1016/j.conbuildmat.2019.03.007
  • Morla P, Gupta R, Azarsa P, Sharma A. 2021. Corrosion Evaluation of Geopolymer Concrete Made with Fly Ash and Bottom Ash. Sustainability, 131: 398. https://doi.org/10.3390/su13010398
  • Nagajothi S, Elavenil S, Angalaeswari S, Natrayan L, Mammo WD. 2022. Durability studies on fly ash based geopolymer concrete incorporated with slag and alkali solutions. Advan Civl Eng, 20221. https://doi.org/10.1155/2022/7196446
  • Nasr MS, Hasan ZA, Abed MK. 2019. Mechanical properties of cement mortar made with black tea waste ash as a partial replacement of cement. Eng Tech J, 371C: 45-48. https://doi.org/10.30684/etj.37.1C.7
  • Nazari A, Bagheri A, Sanjayan J, Yadav PNJA, Tariq H. 2019. A Comparative study of void distribution pattern on the strength development between opc-based and geopolymer concrete. Advanc Mater Sci Eng, 2019:1-7. https://doi.org/10.1155/2019/1412757
  • Pławecka K, Bazan P, Lin WT, Korniejenko K, Sitarz M, Nykiel M. 2022. Development of Geopolymers based on fly ashes from different combustion processes. Polymers, 1410: 1954. https://doi.org/10.3390/polym14101954
  • Poranek N, Łaźniewska-Piekarczyk B, Czajkowski A, Pikoń K. 2022. MSWIBA Formation and geopolymerisation to meet the united nations sustainable development goals sdgs and climate mitigation. Buildings, 128: 1083. https://doi.org/10.3390/buildings12081083
  • Qiao Q, Yunusa-Kaltungo A, Edwards RE. 2021. Towards developing a systematic knowledge trend for building energy consumption prediction. J Build Eng, 35: 101967. https://doi.org/10.1016/j.jobe.2020.101967
  • Qin Y, Chen X, Li B, Guo Y, Niu Z, Xia T, … Zhou M. 2021. Study on the mechanical properties and microstructure of chitosan reinforced metakaolin-based geopolymer. Constr Build Mater, 271: 121522. https://doi.org/10.1016/j.conbuildmat.2020.121522
  • Ranjbar N, Balali A, Valipour A, Yunusa-Kaltungo A, Edwards R, Pignatta G, … Shen W. 2021. Investigating the environmental impact of reinforced-concrete and structural-steel frames on sustainability criteria in green buildings. J Build Eng, 43: 103184. https://doi.org/10.1016/j.jobe.2021.103184
  • Rees CA, Provis JL, Lukey GC, van Deventer JS. J. 2007. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir, 2315: 8170-8179. https://doi.org/10.1021/la700713g
  • Sarkar M, Dana K. 2021. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram Intern, 473: 3473-3483. https://doi.org/10.1016/j.ceramint.2020.09.191
  • Shubbar AA, Jafer H, Abdulredha M, Al-Khafaji ZS, Nasr MS, Al Masoodi Z, Sadique M. 2020. Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days. J Build Eng, 30: 101327. https://doi.org/10.1016/j.jobe.2020.101327
  • Statistic. 2022. Tea production worldwide from 2006 to 2022, by leading country in metric tons. URL: https://www.statista.com/statistics/264188/production-of-tea-by-main-producing-countries-since-2006/ (accessed date: December 25, 2024)
  • Su Q, Xu J. 2024. Mechanical properties of rice husk ash and glass powder concrete: Experimental and mesoscopic studies. J Build Eng, 95: 110278. https://doi.org/10.1016/j.jobe.2024.110278
  • Tee KF, Mostofizadeh S. 2021. A mini review on properties of portland cement concrete with geopolymer materials as partial or entire replacement. Infrastructures, 62: 26. https://doi.org/10.3390/infrastructures6020026
  • Temuujin J, Minjigmaa A, Rickard W, Lee M, Williams, I, van Riessen, A. 2009. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. App Clay Sci, 463: 265-270. https://doi.org/10.1016/j.clay.2009.08.015
  • Terzi C, Kutuk S, Kutuk-Sert T. 2025. Influence of processed tea waste ash on the hydration products and mechanical property of hybrid cement as an eco-friendly solution. Wast Manag, 191: 242-252. https://doi.org/10.1016/j.wasman.2024.11.016
  • Trabacchin G, Sebastian W, Zhang M. 2022. Experimental and analytical study of bond between basalt FRP bars and geopolymer concrete. Constr Build Mater, 315: 125461. https://doi.org/10.1016/j.conbuildmat.2021.125461
  • Yang K, Yang C, Magee B, Nanukuttan S, Ye J. 2016. Establishment of a preconditioning regime for air permeability and sorptivity of alkali-activated slag concrete. Cem Concr Comp, 73: 19-28. https://doi.org/10.1016/j.cemconcomp.2016.06.019
  • Yaseri S, Hajiaghaei G, Mohammadi F, Mahdikhani M, Farokhzad R. 2017. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Constrand Build Mater, 157, 534-545. https://doi.org/10.1016/j.conbuildmat.2017.09.102

Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi

Yıl 2025, Cilt: 8 Sayı: 6, 1998 - 2005, 15.11.2025
https://doi.org/10.34248/bsengineering.1795131

Öz

Bu çalışma, atık çay külünün (AÇK) metakaolin esaslı geopolimer kompozitlerde sürdürülebilir bir silika kaynağı olarak değerlendirilmesini araştırmaktadır. AÇK'nın geopolimer sistemi üzerindeki spesifik etkisini izole etmek amacıyla, sabit Si/Al molar oranı (3) korunarak silika dumanının yerine farklı oranlarda AÇK ikame edilmiştir. AÇK'nın mekanik davranış, fiziksel özellikler ve mikroyapısal evrim üzerindeki etkileri, basınç ve eğilme dayanımı deneyleri, ultrasonik atım hızı (UAH), su emme, yoğunluk ölçümleri ile XRD, FT-IR analizleri aracılığıyla kapsamlı olarak incelenmiştir. Sonuçlar, zıt yönlü bir mekanik eğilim göstermiştir: yüksek AÇK içeriğinde basınç dayanımı azalırken (%30,3'e kadar), eğilme dayanımı önemli ölçüde iyileşmiştir (%38,8'e kadar artış). Bu durum, mikro-lifli AÇK parçacıklarının çatlak köprüleme ajanları olarak görev yapmasına atfedilmiştir. Gözlemlenen yoğunlaşma ve azalan gözenekliliğe rağmen, mikroyapısal arıtma sonucu daha ince ancak daha kopuk gözenekler oluşması nedeniyle 28 günlük UAH değerleri düşmüştür. Bulgular, AÇK'nın hem reaktif öncül hem de mikroyapısal düzenleyici olarak ikili rolünü vurgulamakta ve yük taşımayan veya yangına dayanıklı uygulamalar için uygun, eğilme baskın, çevre dostu geopolimer malzemeler geliştirilmesindeki potansiyelini göstermektedir.

Etik Beyan

Bu araştırmada hayvanlar ve insanlar üzerinde herhangi bir çalışma yapılmadığı için etik kurul onayı alınmamıştır.

Kaynakça

  • Altwair NM, Zeyad AM, Sryh LS, Alsharif AM, Sreh MM. 2024. Accelerated environmental conditions study on palm oil fuel ash-incorporated engineered cementitious composites: A durability assessment approach. Constr Build Mater, 450: 138654. https://doi.org/10.1016/j.conbuildmat.2024.138654
  • Alvarenga KP, Cordeiro GC. 2024. Evaluating sugarcane bagasse fly ash as a sustainable cement replacement for enhanced performance. Cleaner Eng Tech, 20: 100751. https://doi.org/10.1016/j.clet.2024.100751
  • Assaedi H, Alomayri T, Shaikh FUA, Low IM. 2015. Characterisation of mechanical and thermal properties in flax fabric reinforced geopolymer composites. J Advan Ceram, 4: 272-281. https://doi.org/10.1007/s40145-015-0161-1
  • ASTM C597-22. 2003. Standard test method for ultrasonic pulse velocity through concrete. ASTM Int. West Conshohocken, US, pp: 4.
  • Bheel N, Kumar S, Kirgiz MS, Ali M, Almujibah HR, Ahmad M, Gonzalez-Lezcano RA. 2024. Effect of wheat straw ash as cementitious material on the mechanical characteristics and embodied carbon of concrete reinforced with coir fiber. Heliyon, 10: e24313. https://doi.org/10.1016/j.heliyon.2024.e24313
  • Cai J, Jiang J, Gao X, Ding M. 2022. Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder. Materials, 15: 2363. https://doi.org/10.3390/ma15072363
  • Caronge MA, Tjaronge MW, Rahim IR, Irmawaty R, Lapian FEP. 2022. Feasibility study on the use of processed waste tea ash as cement replacement for sustainable concrete production. J Build Eng, 52: 104458. https://doi.org/10.1016/j.jobe.2022.104458
  • Dehghani A, Aslani F, Ghaebi Panah N. 2021. Effects of initial SiO2/Al2O3 molar ratio and slag on fly ash-based ambient cured geopolymer properties. Constr Build Mater, 293: 123527. https://doi.org/10.1016/j.conbuildmat.2021.123527
  • Djamaluddin AR, Caronge MA, Tjaronge MW, Lando AT, Irmawaty R. 2020. Evaluation of sustainable concrete paving blocks incorporating processed waste tea ash. Case Stud Constr Mater, 12: e00325. https://doi.org/10.1016/j.cscm.2019.e00325
  • EN 1015-10. 2001. Methods of test for mortar for masonry- Part 10: Determination of dry bulk density of hardened mortar, CEN, Brussels, Belgium, pp: 7.
  • EN 1015-11. 2000. Methods of test for mortar for masonry- Part 11: Determination of flexural and compressive strength of hardened mortar, CEN, Brussels, Belgium, pp: 4.
  • EN 1015-18. 2000. Methods of test for mortar for masonry - Part 18: Determination of water absorption coefficient due to capillary action of hardened mortar, CEN, Brussels, Belgium, pp: 4.
  • Feng B, Liu J, Chen Y, Zhang M, Tan X. 2022. Investigation on basic properties and durability of metakaolin based geopolymer modified with silane. Poly Comp, 438: 5500-5510. https://doi.org/10.1002/pc.26858
  • Gartner E, Sui T. 2018. Alternative cement clinkers. Cem and Concr Res, 114: 27-39. doi:10.1016/j.cemconres.2017.02.002
  • Jing W, Luo R, Ding S, Duan P. 2022. Influences of Multi-Component Supplementary Cementitious Materials on the Performance of Metakaolin Based Geopolymer. J Renew Mater, 107: 1813-1828. https://doi.org/10.32604/jrm.2022.018771
  • Kaze RC, Beleuk à Moungam LM, Cannio M, Rosa R, Kamseu E, Melo UC, Leonelli C. 2018. Microstructure and engineering properties of Fe2O3FeO-Al2O3-SiO2 based geopolymer composites. J Clean Prod, 199: 849-859. https://doi.org/10.1016/j.jclepro.2018.07.171
  • Kozub B, Bazan P, Mierzwiński D, Korniejenko K. 2021. Fly-ash-based geopolymers reinforced by melamine fibers. Materials, 142: 400. https://doi.org/10.3390/ma14020400
  • Liu J, Doh JH, Ong DEL, Wang S, Yang Y, Dinh HL, Zi G. 2023. Correlation between dissolubilities of Si, Al, and Fe from aluminosilicate precursor and strength of fly ash-based geopolymer. Constr Build Mater, 393: 132107. https://doi.org/10.1016/j.conbuildmat.2023.132107
  • Moraes MJB, Moraes JCB, Tashima MM, Akasaki JL, Soriano L, Borrachero MV, Payá J. 2019. Production of bamboo leaf ash by auto-combustion for pozzolanic and sustainable use in cementitious matrices. Constr Build Mater, 208: 369-380. https://doi.org/10.1016/j.conbuildmat.2019.03.007
  • Morla P, Gupta R, Azarsa P, Sharma A. 2021. Corrosion Evaluation of Geopolymer Concrete Made with Fly Ash and Bottom Ash. Sustainability, 131: 398. https://doi.org/10.3390/su13010398
  • Nagajothi S, Elavenil S, Angalaeswari S, Natrayan L, Mammo WD. 2022. Durability studies on fly ash based geopolymer concrete incorporated with slag and alkali solutions. Advan Civl Eng, 20221. https://doi.org/10.1155/2022/7196446
  • Nasr MS, Hasan ZA, Abed MK. 2019. Mechanical properties of cement mortar made with black tea waste ash as a partial replacement of cement. Eng Tech J, 371C: 45-48. https://doi.org/10.30684/etj.37.1C.7
  • Nazari A, Bagheri A, Sanjayan J, Yadav PNJA, Tariq H. 2019. A Comparative study of void distribution pattern on the strength development between opc-based and geopolymer concrete. Advanc Mater Sci Eng, 2019:1-7. https://doi.org/10.1155/2019/1412757
  • Pławecka K, Bazan P, Lin WT, Korniejenko K, Sitarz M, Nykiel M. 2022. Development of Geopolymers based on fly ashes from different combustion processes. Polymers, 1410: 1954. https://doi.org/10.3390/polym14101954
  • Poranek N, Łaźniewska-Piekarczyk B, Czajkowski A, Pikoń K. 2022. MSWIBA Formation and geopolymerisation to meet the united nations sustainable development goals sdgs and climate mitigation. Buildings, 128: 1083. https://doi.org/10.3390/buildings12081083
  • Qiao Q, Yunusa-Kaltungo A, Edwards RE. 2021. Towards developing a systematic knowledge trend for building energy consumption prediction. J Build Eng, 35: 101967. https://doi.org/10.1016/j.jobe.2020.101967
  • Qin Y, Chen X, Li B, Guo Y, Niu Z, Xia T, … Zhou M. 2021. Study on the mechanical properties and microstructure of chitosan reinforced metakaolin-based geopolymer. Constr Build Mater, 271: 121522. https://doi.org/10.1016/j.conbuildmat.2020.121522
  • Ranjbar N, Balali A, Valipour A, Yunusa-Kaltungo A, Edwards R, Pignatta G, … Shen W. 2021. Investigating the environmental impact of reinforced-concrete and structural-steel frames on sustainability criteria in green buildings. J Build Eng, 43: 103184. https://doi.org/10.1016/j.jobe.2021.103184
  • Rees CA, Provis JL, Lukey GC, van Deventer JS. J. 2007. Attenuated total reflectance fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir, 2315: 8170-8179. https://doi.org/10.1021/la700713g
  • Sarkar M, Dana K. 2021. Partial replacement of metakaolin with red ceramic waste in geopolymer. Ceram Intern, 473: 3473-3483. https://doi.org/10.1016/j.ceramint.2020.09.191
  • Shubbar AA, Jafer H, Abdulredha M, Al-Khafaji ZS, Nasr MS, Al Masoodi Z, Sadique M. 2020. Properties of cement mortar incorporated high volume fraction of GGBFS and CKD from 1 day to 550 days. J Build Eng, 30: 101327. https://doi.org/10.1016/j.jobe.2020.101327
  • Statistic. 2022. Tea production worldwide from 2006 to 2022, by leading country in metric tons. URL: https://www.statista.com/statistics/264188/production-of-tea-by-main-producing-countries-since-2006/ (accessed date: December 25, 2024)
  • Su Q, Xu J. 2024. Mechanical properties of rice husk ash and glass powder concrete: Experimental and mesoscopic studies. J Build Eng, 95: 110278. https://doi.org/10.1016/j.jobe.2024.110278
  • Tee KF, Mostofizadeh S. 2021. A mini review on properties of portland cement concrete with geopolymer materials as partial or entire replacement. Infrastructures, 62: 26. https://doi.org/10.3390/infrastructures6020026
  • Temuujin J, Minjigmaa A, Rickard W, Lee M, Williams, I, van Riessen, A. 2009. Preparation of metakaolin based geopolymer coatings on metal substrates as thermal barriers. App Clay Sci, 463: 265-270. https://doi.org/10.1016/j.clay.2009.08.015
  • Terzi C, Kutuk S, Kutuk-Sert T. 2025. Influence of processed tea waste ash on the hydration products and mechanical property of hybrid cement as an eco-friendly solution. Wast Manag, 191: 242-252. https://doi.org/10.1016/j.wasman.2024.11.016
  • Trabacchin G, Sebastian W, Zhang M. 2022. Experimental and analytical study of bond between basalt FRP bars and geopolymer concrete. Constr Build Mater, 315: 125461. https://doi.org/10.1016/j.conbuildmat.2021.125461
  • Yang K, Yang C, Magee B, Nanukuttan S, Ye J. 2016. Establishment of a preconditioning regime for air permeability and sorptivity of alkali-activated slag concrete. Cem Concr Comp, 73: 19-28. https://doi.org/10.1016/j.cemconcomp.2016.06.019
  • Yaseri S, Hajiaghaei G, Mohammadi F, Mahdikhani M, Farokhzad R. 2017. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Constrand Build Mater, 157, 534-545. https://doi.org/10.1016/j.conbuildmat.2017.09.102
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yapı Malzemeleri
Bölüm Research Articles
Yazarlar

Nurullah Öksüzer 0000-0003-1145-799X

Erken Görünüm Tarihi 13 Kasım 2025
Yayımlanma Tarihi 15 Kasım 2025
Gönderilme Tarihi 1 Ekim 2025
Kabul Tarihi 3 Kasım 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 6

Kaynak Göster

APA Öksüzer, N. (2025). Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi. Black Sea Journal of Engineering and Science, 8(6), 1998-2005. https://doi.org/10.34248/bsengineering.1795131
AMA Öksüzer N. Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi. BSJ Eng. Sci. Kasım 2025;8(6):1998-2005. doi:10.34248/bsengineering.1795131
Chicago Öksüzer, Nurullah. “Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi”. Black Sea Journal of Engineering and Science 8, sy. 6 (Kasım 2025): 1998-2005. https://doi.org/10.34248/bsengineering.1795131.
EndNote Öksüzer N (01 Kasım 2025) Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi. Black Sea Journal of Engineering and Science 8 6 1998–2005.
IEEE N. Öksüzer, “Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi”, BSJ Eng. Sci., c. 8, sy. 6, ss. 1998–2005, 2025, doi: 10.34248/bsengineering.1795131.
ISNAD Öksüzer, Nurullah. “Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi”. Black Sea Journal of Engineering and Science 8/6 (Kasım2025), 1998-2005. https://doi.org/10.34248/bsengineering.1795131.
JAMA Öksüzer N. Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi. BSJ Eng. Sci. 2025;8:1998–2005.
MLA Öksüzer, Nurullah. “Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi”. Black Sea Journal of Engineering and Science, c. 8, sy. 6, 2025, ss. 1998-05, doi:10.34248/bsengineering.1795131.
Vancouver Öksüzer N. Atık Çay Külünün Çimentosuz Geopolimer Karışımlarda Silika Kaynağı Olarak Değerlendirilmesi. BSJ Eng. Sci. 2025;8(6):1998-2005.

                           24890