Üstün Yetenekli Çocuklar için Matematiksel Yetenek Testi’nin (TOMAGS) Türkçe’ye Uyarlama Çalışması
Adaptation Study of Mathematical Ability Test (TOMAGS) to Turkish

Duygu ÖZDEMİR [1] , Mine IŞIKSAL [2]


Günümüzde, toplumları ileriye taşıyabilecek potansiyeller olarak görülen matematikte üstün yetenekli çocukların tanılanmaları ve ihtiyaç duydukları eğitimsel desteğin sağlanabilmesi oldukça önemli bir konu olarak görülmeye başlanmıştır. Ancak var olan uygulamalar ve erişilebilen alan yazın taramaları bu çocukları tanılamak için çok yaygın ve net bir yöntem bulunmadığını ortaya koymaktadır. Bu sebeple, bu çalışmada matematikte üstün yetenekli çocukları belirlemek amacıyla geliştirilmiş olan TOMAGS (Test of Mathematical Abilities for Gifted Students)’ın Türkçe uyarlama çalışmaları süreci ve bulguları hakkında bilgi vermek amaçlanmıştır. Standardize edilmiş, norm referanslı bir test olan TOMAGS’ın Türkçe uyarlama sürecinde başarı testinin uyarlama sürecine ilişkin önerilen adımlar izlenmiştir. Bu süreçte önce dil ve kültür uyarlamaları yapılmış, ardından testin 9-12 yaş aralığındaki 563 kişiden oluşan örneklemde uygulanmasından elde edilen veriler ile psikometrik analizleri yapılmıştır. Güvenilirlik ve geçerlik kanıtları sunulan uygulama sonuçlarında ise testin Türkçe dilinde de üstün yetenekli çocukların matematiksel yeteneğin seviyelerini belirlemede kullanılabileceği sonucuna varılmıştır.

Nowadays, it is an important issue to diagnose and provide educational support to mathematically gifted students who are seen as the potential to develop societies. Literature review and existed practices reveal that there is no common and clear way to diagnose mathematically gifted students. In this study, it was aimed to explain the adaptation studies of Test of Mathematical Abilities for Gifted Students (TOMAGS), which was developed by Ryser and Johnsen (1998) into Turkish Language. TOMAGS was a norm referenced, standardized test and in this study, steps that Hambleton (2002) proposed for adaptation of an achievement test were followed. In this regard, first of all, language and cultural adaptations were conducted and then, psychometric analysis was carried out based on the results obtained from implementation of the test with the sample consisting of 563 students whom aged ranged between 9 and 12 in different cities of Turkey. Results show validity and reliability evidences from the implementation and it was concluded that the test can also be used in Turkish Language for identifying mathematical abilities of gifted students.
  • Austin, E. J., Saklofske, D. H., Huang, S. H., & McKenney, D. (2004). Measurement of trait emotional intelligence: Testing and cross-validating a modified version of Schutte et al.'s (1998) measure. Personality and individual differences, 36(3), 555-562.
  • Ang, S., Van Dyne, L., Koh, C., Ng, K.Y., Templar, K.J., Tay, C., & Chandrasekar, N.A. (2007). Cultural intelligence: Its measurement and effects on cultural judgment and decision making, cultural adaptation and task performance. Management and Organization Review, 3(03), 335–71.
  • Ashley, R. M. (Ed.). (1973). Activities for motivating and teaching bright children. West Nyack, NY: Parker Publishing.
  • Babacan, T & Dilci, T. (2012). Çoklu zeka ölçeği’nin türkçeye uyarlama çalışmaları. Education Sciences, 7(3), 969-982.
  • Bar-On, R., & Parker, J. D. A. (2000). BarOn emotional quotient inventory: Youth version. Toronto, ON, Canada: Multi-Health system, Incorporated.
  • Basister, M. P., & Kawai, N. (2018). Japan’s educational practices for mathematically gifted students. International Journal of Inclusive Education, 22(11), 1213-1241.
  • Callahan, C. M. (2006). Assessment in the classroom: The key to good instruction. Waco, TX: Prufrock Press.
  • Churchill J, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of marketing research, 64-73.
  • Cortina, J. M. (1993). What is coefficient alpha? An examination of theory and applications. Journal of applied psychology, 78(1), 98.
  • Crocker, L., & Algina, J. (1986). Introduction to modern and classical test theory. New York: Holt Rinehart & Winston.
  • Crowley, B. M, (2015). The Effects of Problem-Based Learning on Mathematics Achievement of Elementary Students Across Time. Western Kentucky University. Kentucky.
  • Davaslıgil, Ü. (2004). Yüksek matematik yeteneğinin erken kestirimi. In M. R. Şirin, A. Kulaksızoğlu, A.E. Bilgili (Eds.), 1. Türkiye Üstün Yetenekli Çocuklar Kongresi Seçilmiş Bildiriler Kitabı (pp. 263-283). İstanbul: Çocuk Vakfı Yayınları.
  • Drost, E. A. (2011). Validity and reliability in social science research. Education Research and perspectives, 38(1), 105.
  • Fıçıcı, A. & Siegle, D. (2008). International teachers’ judgment of gifted mathematics student characteristics. Journal of Gifted Talented International, 23(1), 22- 37.
  • Gadanidis, G., Hughes, J., & Cordy, M. (2011). Mathematics for gifted students in an arts and technology-rich setting. Journal for the Education of the Gifted 34(3): 397-433.
  • George, D., & Mallery, P. (2010). SPSS for Windows step by step. A simple study guide and reference (10. Baskı). GEN, Boston, MA: Pearson Education, Inc.
  • Glavche, M., Anevska, K., & Malcheski, R. (2019). Working with mathematically gifted students in the initial education–part one. International Journal of Education Teacher, 9(18), 35-46.
  • Greenes, C. (1981). Identifying the gifted student in mathematics. In J., A. Hatch (Ed.). Doing qualitative research in education settings. Albany: State University of New York Press.
  • Hambleton, R. K. (2002) Adapting achievement tests into multiple languages for international assessments. In R. K. Hambleton (Ed.) Adapting Achievement Tests into Multiple Languages for International Assessments (pp. 58-79). Washington, DC: National Academies Press.
  • Hambleton, R. K., Hieronymous, A. N., & Hoover, H. D. (1987). Iowa Test of Basic Skills, Forms G and H. Test critiques, 6, 277-286.
  • Hannah J., James A., Montelle C., & Nokes J. (2011). Meeting the needs of our best and brightest: curriculum acceleration in tertiary mathematics. International Journal of Mathematical Education in Science and Technology, 42(3), 299-312.
  • House, P. A. (Ed). (1987). Providing opportunities for the mathematically gifted, K12. Reston, VA: National Council of Teachers of Mathematics.
  • İlhan, M., & Çetin, B. (2014). Kültürel Zekâ Ölçeği'nin Türkçe formunun geçerlik ve güvenirlik çalışması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 29(29-2), 94-114. Johnson, D. T. 2000. Teaching Mathematics to Gifted Students in a Mixed-Ability Classroom. Reston, VA: Eric Clearinghouse.
  • Karabulut, A. (2012). Duygusal zeka: Baron ölçeği uyarlaması. Doctoral dissertation, DEÜ Eğitim Bilimleri Enstitüsü.
  • Krutetski, V. A. (1976). The psychology of mathematical abilities in school children. Chicago: The University of Chicago Press.
  • Leader, W. S. (2008). Metacognition among students identified as gifted or nongifted using the discover assessment.The University of Arizona, Arizona.
  • Leikin, R. (2009). Exploring mathematical creativity using multiple solution tasks. In R. Leikin, A. Berman and B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 129–145). Rotterdam, the Netherlands: Sense Publishers.
  • Lupkowski-Shoplik, A. E., & Kuhnel, A. (1995). Mathematics enrichment for talented elementary students. Gifted Child Today Magazine, 18(4), 28.
  • Matlock-Hetzel, S. (1997). Basic concepts in item and test analysis. Retrieved from http://files.eric.ed.gov/fulltext/ED406441.pdf.
  • McClellan, J. A., & Conti, G. J. (2008). Identifying the multiple intelligences of your students. Journal of Adult Education, 37(1), 13-32.
  • Meehan, J. M. (2007). The role of gifted third, fourth, and fifth grade students' gender on mathematics achievement, self-efficacy, and attitude. Doctoral dissertation, Walden University.
  • Ministry of National Education [MoNE]. (2013), Ortaokul Matematik Dersi (5, 6, 7 ve 8. Sınıflar) Öğretim Programı. Ankara: MEB.
  • Pallant, J. (2015). SPSS Survival Manual. Open University Press, Berkshire.
  • Peter, J. P. (1979). Reliability: A review of psychometric basics and recent marketing practices. Journal of marketing research, 6-17.
  • Pierson, E. E., Kilmer, L. M., Rothlisberg, B. A., McIntosh, D. E. (2012). Use of brief intelligence tests in the identification of giftedness. Journal of Psychoeducational Assessment, 30, 10-24.
  • Pitta-Pantazi D. P., Christou C., Kontoyianni K., & Kattou M. (2011). A model of mathematical giftedness: integrating natural, creative, and mathematical abilities, Canadian Journal of Science, Mathematics and Technology Education, 11(1), 39-54.
  • Quaigrain, K., & Arhin, A. K. (2017). Using reliability and item analysis to evaluate a teacher-developed test in educational measurement and evaluation. Cogent Education, 4(1), 1301013.
  • Ryser, G.R. & Johnsen, S.K. (1998). Test of mathematical abilities for gifted students. Austin, TX: Pro-ed.
  • Sheffield, L. J. (1994). The development of gifted and talented mathematics students and the National Council of Teachers of Mathematics Standards (Research Monograph No. 9404). Storrs: National Research Center on the Gifted and Talented, University of Connecticut.
  • Singer, F. M., Sheffield, L. J., Freiman, V., & Brandl, M. (2016). Research on and activities for mathematically gifted students (pp. 1-41). Springer International Publishing.
  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics?. Prufrock Journal, 17(1), 20-36.
  • Sriraman, B. (2008). Creativity, giftedness, and talent development in mathematics. United States of America: Age Publishing Inc.
  • Sriraman, B., Haavold P., & Lee K. (2013). Mathematical creativity and giftedness: a commentary on and review of theory, new operational views, and ways forward. Mathematics Education, 45(1), 215–225.
  • Stanley, J. C. (1976). The study of mathematically precocious youth. Gifted Child Quarterly, 26, 53-67.
  • Stanley, J. C. (1991). An academic model for educating the mathematically talented. Gifted Child Quarterly, 35(1), 36-42.
  • Tatar, A., Tok, S., & Saltukoğlu, G. (2011). Gözden geçirilmiş schutte duygusal zeka ölçeğinin türkçe'ye uyarlanması ve psikometrik özelliklerinin incelenmesi. Klinik Psikofarmakoloji Bülteni-Bulletin of Clinical Psychopharmacology, 21(4), 325-338.
  • Thompson, B., & Levitov, J. E. (1985). Using microcomputers to score and evaluate test items. Colligate Microcomputer, 3, 163-168.
  • Thorndike, R. L., & Hagen, E. P. (1986). Cognitive Abilities Test: Form 4. Riverside Publishing Company.
  • Tortop, H. S., & Sarar, M. (2018). Üstün Yetenekliler Eğitimine İlişkin Bilgi Testi Geliştirme ve Algı Ölçeği Adaptasyon Çalışması. Üstün Zekalılar Eğitimi ve Yaratıcılık Dergisi, 5(2), 67-83.
  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes, (M. Cole, V. John-Steiner, S. Scribner & E. Souberman, Eds. and trans.). Cambridge, MA: Harvard University Press.
Birincil Dil en
Konular Eğitim, Eğitim Araştırmaları
Bölüm Makaleler / Articles
Yazarlar

Orcid: 0000-0001-5841-3404
Yazar: Duygu ÖZDEMİR (Sorumlu Yazar)
Kurum: İSTANBUL AYDIN ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0001-7619-1390
Yazar: Mine IŞIKSAL
Kurum: ORTA DOĞU TEKNİK ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 5 Şubat 2021

APA Özdemir, D , Işıksal, M . (2021). Adaptation Study of Mathematical Ability Test (TOMAGS) to Turkish . Bartın University Journal of Faculty of Education , 2021 February, Volume 10 (Issue 1) , 200-217 . Retrieved from https://dergipark.org.tr/tr/pub/buefad/issue/58052/801589