Derleme
BibTex RIS Kaynak Göster

Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler

Yıl 2021, Cilt: 4 Sayı: 1, 80 - 90, 30.06.2021

Öz

Mikroalgler nüfusun sürdürülebilir bir gıda tedariğine duyduğu gereksinimi karşılayabilecek önemli potansiyele sahip kaynaklardır. Mikroalgler sadece önemli bir protein kaynağı olarak değil, aynı zamanda insan sağlığı üzerine olumlu etkileri bulunan biyoaktif bileşenlerce zengin olmaları açısından da önemlidir. Sahip oldukları antioksidatif, antihipertansif, antikarsinojenik etkiler yenilikçi ve fonksiyonel gıda üretiminde dikkatleri mikroalglere ve özellikle mikroalg bazlı proteinlere çekmiştir. İnsan sağlığı üzerine etkilerini direk inceleyen bilimsel nitelikte bir çalışma olmamakla birlikte şu anda literatürde yapılmış uygulamalar gıda ürününe alg biyokütlesinin tamamen eklenmesi veya belirli bazı bileşenlerin eklenmesi şeklindedir.

Destekleyen Kurum

-

Proje Numarası

-

Teşekkür

-

Kaynakça

  • [1] United Nations Department of Economic and Social Affairs. World Population Prospects 2019: Highlights (2019). Çevrimiçi Erişim Linki: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html#:~:text=World%20Population%20Prospects%202019%3A%20Highlights,-17%20June%202019&text=The%20world's%20population%20is%20expected,United%20Nations%20report%20launched%20today. (Erişim Tarihi, 10.02.2021).
  • [2] Dünyada Gıda Güvenliği ve Beslenme Durumu – Ekonomik Yavaşlama ve Gerilemelere Karşı Önlem Alma. Çevrimiçi Erişim Linki: http://www.fao.org/3/ca5249tr/ca5249tr.pdf (Erişim Tarihi: 10.02.2021)
  • [3] Profeta, A., Baune, M. C., Smetana, S., Bornkessel, S., Broucke, K., Royen, G., Enneking, U., Weiss, J., Heinz, V., Hieke, S., Terjung, N. “Preferences of German consumers for meat products blended with plant-based proteins”. Sustainability, 13(650),2021
  • [4] Smetana, S., Mathys, A., Knoch, A, Heinz V. “Meat alternatives: life cycle assessment of most known meat substitutes”. Int J Life Cycle Assess. 20:1254–67, 2015
  • [5] Özcan, T., Baysal, S. “Vejetaryen beslenme ve sağlık üzerine etkileri”. U. Ü. Ziraat Fakültesi Dergisi, Cilt 30, Sayı 2, 101-116, 2016.
  • [6] Rosi, A., Mena, P., Pellegrini, N., Turroni, S., Neviani, E., Ferrocino, I. vd. “Environmental impact of omnivorous, ovo-lacto-vegetarian, and vegan diet”. Sci Rep. 7:6105, 2017.
  • [7] El-Sheekh, M. M., Osman, M.E.H., Dyab, M.A., Amer, M.S. “Production and characterization of antimicrobial active substance from the Cyanobacterium Nostoc muscorum”. Environmental Toxicology and Pharmacology 21(1): 42–50, 2006.
  • [8] Oğur, S. “Kurutulmuş alglerin besin değeri ve gıda olarak kullanımı”. Su Ürünleri Dergisi, 3(1): 67-79, 2016.
  • [9] Ünver Alçay, A., Bostan, K., Dinçel, E., Varlık, C. “Alglerin insan gıdası olarak kullanımı”. Aydın Gastronomy, 1(1): 47-59, 2017.
  • [10] MacArtain, P., Gill, C.I.R., Mariel Brooks, M., Campbell, R., Rowland, I.R. “Nutritional Value of Edible Seaweeds”. Nutrition Reviews, 65(12) :535–543, 2007.
  • [11] Sasa, A., Şentürk, F., Üstündağ, Y., Erem, F. “Alglerin Gıda veya Gıda Bileşeni Olarak Kullanımı ve Sağlık Üzerine Etkileri”. 2(2):97-110, 2020.
  • [12] Spiegel, M., Noordam, M.Y., Fels-Klerx, H.J. “Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production”. Compr Rev Food Sci Food Saf. 12:662–78, 2013.
  • [13] Abbas, O. T., Mohammed, A. J., Al-Hussieny, A. A. “The ability to use Spırulına sp. as food for common carp fısh (Cyprınus Carpıo L. 1758)”. Plant Archives Vol. 20, Supplement 1, pp. 532-535, 2020.
  • [14] Yüksel, Ç. “Farklı oksidatif stres ortamlarında mikroalglerde bulunan karotenoidlerin analizi”. Yüksek Lisans Tezi, Uludağ Üniversitesi Kimya Anabilim Dalı, Bursa, 2018.
  • [15] Sankaran, R., Show, P.L., Cheng, Y.S., Tao, Y., Ao, X., Nguyen T.D.P., Quyen, D.V. “Integration process for protein extraction from microalgae using liquid biphasic electric flotation (LBEF) system”. Molecular Biotechnology, 60: 749-776, 2018
  • [16] Smetana S, Sandmann M, Rohn S, Pleissner, D, Heinz V. “Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment”. Bioresour Technol. 245:162–70, 2017.
  • [17] Spiegel, M., Noordam, M.Y., Fels-Klerx, H.J. “Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production”. Compr Rev Food Sci Food Saf. 12:662–78, 2013.
  • [18] Szabo, N. J., Matulka, R.A., Chan, T. “Safety evaluation of whole Algalin protein (WAP) from Chlorella protothecoides” Food Chem. Toxicol., 59, pp. 34-45, 2013.
  • [19] Matsuda, F., Hayashi, M., Kondo, A. “Comparative profiling analysis of central metabolites in Euglena gracilisunder various cultivation conditions” Biosci. Biotechnol. Biochem., 75, pp. 2253-2256, 2011.
  • [20] Torres-Tiji, Y., Fields, F. J., Stephen P.Mayfield, S. P. “Microalgae as a future food source”. Biotechnology Advances Volume 41, July–August, 107536, 2020.
  • [21] Arslan, M. 2015. Diyetimizde yer alan bazı sebzelerdeki fenolik bileşiklerin in vitro sindirim uygulaması ile biyoyararlılıklarının belirlenmesi. Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, Manisa, 2015.
  • [22] Giritlioğlu, N., Yıldız, E., Gürbüz, O. “Kombu Çayı Üretiminde Kapari Tomurcuklarının (Capparis spp.) Kullanımının Fenolikler, Antioksidant Kapasite ve Biyoerişilebilirliğe Etkisi”. Akademik Gıda 18(4) 390-401, 2020.
  • [23] Carbonell-Capella, J.M., Buniowska, M., Barba, F.J., Esteve, M.J., Frigola, A. “Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review”. Compr Rev Food Sci Food Saf. 13:155–71, 2014.
  • [24] Griffiths, M.J., Harrison, S.T.L. “Lipid productivity as a key characteristic for choosing algal species for biodiesel production” J. Appl. Phycol., 21, pp. 493-507, 2009.
  • [25] Swanson, D., Block, R., Mousa, S.A. “Omega-3 fatty acids EPA and DHA: health benefits throughout life“ Adv. Nutr., 3, pp. 1-7, 2012.
  • [26] Garcia, J.L., de Vicente, M., Galan, B. “Microalgae, old sustainable food and fashion nutraceuticals”. Microbial Biotechnology. 10:1017–24, 2017.
  • [27] Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U. “Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and Starchless Chlamydomonas reinhardtii” Eukaryot. Cell, 8, pp. 1856-1868, 2009.
  • [28] Koller, M., Muhr, A., Braunegg, G. “Microalgae as versatile cellular factories for valued products”. Algal Res., 6, pp. 52-63, 2014.
  • [29] Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A. G., Camire, M. E., Brawley, S.H. “Algae as nutritional and functional food sources: revisiting our understanding”. Journal of Applied Phycology 29:949–82, 2017.
  • [30] Elcik, H., Çakmakçı, M. “Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3): 795-820, 2017.
  • [31] Şişman-Aydın, G. “Mikroalg Teknolojisi ve Çevresel Kullanımı”. Harran Üniversitesi Mühendislik Dergisi, 4(1): 81- 92, 2019.
  • [32] Smetana S, Sandmann M, Rohn S, Pleissner, D, Heinz V. “Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment”. Bioresour Technol. 245:162–70, 2017.
  • [33] Ruiz, J., Olivieri, G., de Vree, J., Bosma, R., Willems, P., Reith, J.H., Eppink,M. H. M., Kleinegris, D. M. M., Wijffels, R. H., Barbosa, M. J. “Towards industrial products from microalgae”. Energy & Environmental Science.9:3036–43, 2016
  • [34] Chacón-Lee, T.L., González-Mariño, G.E. “Microalgae for “healthy” foodspossibilities and challenges”. Comprehensive Reviews in Food Science and Food Safety. 9:655, 2010
  • [35] Brennan L, Owende P. “Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products”. Renew Sust Energy Rev. 14:557–77, 2008.
  • [36] Lam, G.P., Vermuë, M.H., Eppink, M.H.M., Wijffels, R.H., van den Berg, C. “Multi-product microalgae biorefineries: from concept towards reality”. Trends in Biotechnology 36:216–27, 2018.
  • [37] Sharma, N., Sharma, P. “Industrial and biotechnological applications of algae: a review”. Journal of Advances in Plant Biology. 1:1–26, 2017.
  • [38] Christenson L, Sims R. “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts”. Biotechnology Advances 29:686–702, 2011.
  • [39] Chisti Y., Yan J. “Energy from algae: Current status and future trends: Algal biofuels – A status report”, Appl. Energy, 88 (10), 3277-3279, 2011.
  • [40] Caporgno, M.P., Bengoa, C. “Anaerobic digestion of microalgae: the benefits of digesting microalgae waste”. Current Biochemical Engineering Special Issue Biomethane 3:210–22, 2016.
  • [41] Gupta, S., Gupta, C., Garg, A.P., Prakash, D. “Probiotic efficiency of blue green algae on probiotics microorganisms”. Journal of Microbiology and Experimentation, 4(4): 00120, 2017.
  • [42] Kent, M,,Welladsen, H.M., Mangott, A., Li, Y. “Nutritional evaluation of Australian microalgae as potential human health supplements”. PLoS ONE. 10:e0118985, 2015.
  • [43] Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K., Romano, G., Ianora, A. “Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities”. Frontiers in Marine Science 3:68, 2016.
  • [44] Admassu, H., Abdalbasit, M., Gasmalla, A., Yang, R., Zhao, W. “Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties”. Journal of Food Science 83:6–16, 2017.
  • [45] Choe, E., Min, D.B. “Mechanisms of antioxidants in the oxidation of foods”. Comprehensive Reviews in Food Science and Food Safety 8:345–58, 2009.
  • [46] Asioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., Varela, P. “Making sense of the “clean label” trends: a review of consumer food choice behaviour and discussion of industry implications”. Food Research International 99:58–71, 2017.
  • [47] Raymundo, A., Gouveia, L., Batista, A.P., Empis, J., Sousa, I. “Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilised by pea protein”. Food Research International 38:961–65, 2005.
  • [48] Beheshtipour, H., Mortazavian, A.M., Mohammadi, R., Sohrabvandi, S., Khosravi-Darani, K. “Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks”. Comprehensive Reviews in Food Science and Food Safety 12:144–54, 2013.
  • [49] Batista, A.P., Nunes, M.C., Fradinho, P., Gouveia, L., Sousa, I., Raymundo, A., Franco, J. “Novel foods with microalgal ingredients-effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels”. Journal of Food Engineering 110:182–9, 2012.
  • [50] Jeon, J.K. “Effect of Chlorella addition on the quality of processed cheese” Journal of the Korean Society of Food Science and Nutrition 35:373–7, 2006.
  • [51] Darwish, A. “Physicochemical properties, bioactive compounds and antioxidant activity of kareish cheese fortified with Spirulina platensis”. World Journal of Dairy & Food Sciences 12 (2): 71-78, 2017.
  • [52] Gupta, S., Gupta, C., Garg, A.P., Prakash, D. “Probiotic efficiency of blue green algae on probiotics microorganisms”. Journal of Microbiology and Experimentation, 4(4): 00120, 2017.
  • [53] Mocanu, G.D., Botez, E., Nistor, O.V., Andronoiu, D.G., Vlăsceanu, G. “Influence of Spirulina platensis biomass over some starter culture of Lactic Bacteria”. Journal of Agroalimentary Processes and Technologies, 19(4), 474-479, 2013.
  • [54] Çeleklia, A., Alslibib, Z. A., Bozkurt, H. “Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food”. Algal Research 44 (2019) 101710, 2019.
  • [55] Gouveia, L., Batista, A.P., Miranda, A., Empis, J., Raymundo, A. “Chlorella vulgaris biomass used as coloring source in traditional butter cookies”. Innovative Food Science & Emerging Technologies 8:433–6, 2007.
  • [56] Gouveia, L., Coutinho, C., Mendonça, E., Batista, A.P., Sousa, I., Bandarra, N.M.,Raymundo, A. “Functional biscuits with PUFA-&3 from Isochrysis galbana”. Journal of the Science of Food Agriculture 88:891–6, 2008.
  • [57] Singh, P., Singh, R., Jha, A., Rasane, P., Gautam, A.K. “Optimization of a process for high fibre and high protein biscuit”. Journal of Food Science and Technology 52:1394–403, 2015.
  • [58] Batista, A.P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici,M. R., Sousa, I., Raymundo, A. “Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility”. Algal Research 26:161–71, 2017.
  • [59] Mofasser Hossain, A.K.M., Brennan, M.A., Mason, S.L., Guo, X., Zeng, X.A., Brennan, C.S. “The effect of astaxanthin-rich microalgae ‘Haematococcus pluvialis’ and wholemeal flours incorporation in improving the physical and functional properties of cookies”. Foods (2017) 6:57–67, 2017.
  • [60] Ak B, Avşaroğlu E, Işık O, Özyurt G, Kafkas E, Etyemez M, Uslu, L. “Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis”. International Journal of Engineering Research and Application 6:30–8, 2016.
  • [61] Figueira, F.D.S., Crizel, T.D.M., Silva, C.R., Sallas-Mellado, M.D.L.M.S. “Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis”. Brazilian Journal of Food Technology 14:308–16, 2011.
  • [62] Fradique, M., Batista, A., Nunes, M., Gouveia, L., Bandarra, N., Raymundo, A. “Incorporation of Chlorella vulgaris and Spirulina maxima biomass on pasta products. Part 1: preparation and evaluation”. Journal of the Science of Food and Agriculture 90:1656–64, 2010.
  • [63] Fradique, M., Batista, A.P., Nunes, M.C., Gouveia, L., Bandarra, N.M., Raymundo, A. “Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source”. LWT - Food Science and Technology 50:312–9, 2013.
  • [64] El-Baz, F.K., Abdo, S.M., Hussein, A.M.S. “Microalgae Dunaliella salina for use as food supplement to improve pasta quality”. International Journal of Pharmaceutical Sciences Review and Research 46:45–51, 2017.
  • [65] Gouveia, L., Raymundo, A., Batista, A.P., Sousa, I., Empis, J. “Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions”. European Food Research and Technology 222:362–7, 2006.
  • [66] Ursu, A.V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., Michaud, P. “Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris”. Bioresource Technology 157:134–9, 2014.

Alternative Source for the Development of Innovative Food Products: Microalgae

Yıl 2021, Cilt: 4 Sayı: 1, 80 - 90, 30.06.2021

Öz

Microalgae are resources that have significant potential to meet the population's need for a sustainable food supply. Microalgae are important not only as an important source of protein, but also they are rich in bioactive components that have positive effects on human health. Their antioxidative, antihypertensive, anticarcinogenic effects have drawn attention to microalgae and especially microalgae-based proteins in the production of innovative and functional foods. Although it is not a scientific study that directly examines the effects on human health, the applications in the literature are in the form of adding algae biomass to the food product completely or adding certain components of algae.

Proje Numarası

-

Kaynakça

  • [1] United Nations Department of Economic and Social Affairs. World Population Prospects 2019: Highlights (2019). Çevrimiçi Erişim Linki: https://www.un.org/development/desa/publications/world-population-prospects-2019-highlights.html#:~:text=World%20Population%20Prospects%202019%3A%20Highlights,-17%20June%202019&text=The%20world's%20population%20is%20expected,United%20Nations%20report%20launched%20today. (Erişim Tarihi, 10.02.2021).
  • [2] Dünyada Gıda Güvenliği ve Beslenme Durumu – Ekonomik Yavaşlama ve Gerilemelere Karşı Önlem Alma. Çevrimiçi Erişim Linki: http://www.fao.org/3/ca5249tr/ca5249tr.pdf (Erişim Tarihi: 10.02.2021)
  • [3] Profeta, A., Baune, M. C., Smetana, S., Bornkessel, S., Broucke, K., Royen, G., Enneking, U., Weiss, J., Heinz, V., Hieke, S., Terjung, N. “Preferences of German consumers for meat products blended with plant-based proteins”. Sustainability, 13(650),2021
  • [4] Smetana, S., Mathys, A., Knoch, A, Heinz V. “Meat alternatives: life cycle assessment of most known meat substitutes”. Int J Life Cycle Assess. 20:1254–67, 2015
  • [5] Özcan, T., Baysal, S. “Vejetaryen beslenme ve sağlık üzerine etkileri”. U. Ü. Ziraat Fakültesi Dergisi, Cilt 30, Sayı 2, 101-116, 2016.
  • [6] Rosi, A., Mena, P., Pellegrini, N., Turroni, S., Neviani, E., Ferrocino, I. vd. “Environmental impact of omnivorous, ovo-lacto-vegetarian, and vegan diet”. Sci Rep. 7:6105, 2017.
  • [7] El-Sheekh, M. M., Osman, M.E.H., Dyab, M.A., Amer, M.S. “Production and characterization of antimicrobial active substance from the Cyanobacterium Nostoc muscorum”. Environmental Toxicology and Pharmacology 21(1): 42–50, 2006.
  • [8] Oğur, S. “Kurutulmuş alglerin besin değeri ve gıda olarak kullanımı”. Su Ürünleri Dergisi, 3(1): 67-79, 2016.
  • [9] Ünver Alçay, A., Bostan, K., Dinçel, E., Varlık, C. “Alglerin insan gıdası olarak kullanımı”. Aydın Gastronomy, 1(1): 47-59, 2017.
  • [10] MacArtain, P., Gill, C.I.R., Mariel Brooks, M., Campbell, R., Rowland, I.R. “Nutritional Value of Edible Seaweeds”. Nutrition Reviews, 65(12) :535–543, 2007.
  • [11] Sasa, A., Şentürk, F., Üstündağ, Y., Erem, F. “Alglerin Gıda veya Gıda Bileşeni Olarak Kullanımı ve Sağlık Üzerine Etkileri”. 2(2):97-110, 2020.
  • [12] Spiegel, M., Noordam, M.Y., Fels-Klerx, H.J. “Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production”. Compr Rev Food Sci Food Saf. 12:662–78, 2013.
  • [13] Abbas, O. T., Mohammed, A. J., Al-Hussieny, A. A. “The ability to use Spırulına sp. as food for common carp fısh (Cyprınus Carpıo L. 1758)”. Plant Archives Vol. 20, Supplement 1, pp. 532-535, 2020.
  • [14] Yüksel, Ç. “Farklı oksidatif stres ortamlarında mikroalglerde bulunan karotenoidlerin analizi”. Yüksek Lisans Tezi, Uludağ Üniversitesi Kimya Anabilim Dalı, Bursa, 2018.
  • [15] Sankaran, R., Show, P.L., Cheng, Y.S., Tao, Y., Ao, X., Nguyen T.D.P., Quyen, D.V. “Integration process for protein extraction from microalgae using liquid biphasic electric flotation (LBEF) system”. Molecular Biotechnology, 60: 749-776, 2018
  • [16] Smetana S, Sandmann M, Rohn S, Pleissner, D, Heinz V. “Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment”. Bioresour Technol. 245:162–70, 2017.
  • [17] Spiegel, M., Noordam, M.Y., Fels-Klerx, H.J. “Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production”. Compr Rev Food Sci Food Saf. 12:662–78, 2013.
  • [18] Szabo, N. J., Matulka, R.A., Chan, T. “Safety evaluation of whole Algalin protein (WAP) from Chlorella protothecoides” Food Chem. Toxicol., 59, pp. 34-45, 2013.
  • [19] Matsuda, F., Hayashi, M., Kondo, A. “Comparative profiling analysis of central metabolites in Euglena gracilisunder various cultivation conditions” Biosci. Biotechnol. Biochem., 75, pp. 2253-2256, 2011.
  • [20] Torres-Tiji, Y., Fields, F. J., Stephen P.Mayfield, S. P. “Microalgae as a future food source”. Biotechnology Advances Volume 41, July–August, 107536, 2020.
  • [21] Arslan, M. 2015. Diyetimizde yer alan bazı sebzelerdeki fenolik bileşiklerin in vitro sindirim uygulaması ile biyoyararlılıklarının belirlenmesi. Celal Bayar Üniversitesi Fen Bilimleri Enstitüsü, Manisa, 2015.
  • [22] Giritlioğlu, N., Yıldız, E., Gürbüz, O. “Kombu Çayı Üretiminde Kapari Tomurcuklarının (Capparis spp.) Kullanımının Fenolikler, Antioksidant Kapasite ve Biyoerişilebilirliğe Etkisi”. Akademik Gıda 18(4) 390-401, 2020.
  • [23] Carbonell-Capella, J.M., Buniowska, M., Barba, F.J., Esteve, M.J., Frigola, A. “Analytical methods for determining bioavailability and bioaccessibility of bioactive compounds from fruits and vegetables: a review”. Compr Rev Food Sci Food Saf. 13:155–71, 2014.
  • [24] Griffiths, M.J., Harrison, S.T.L. “Lipid productivity as a key characteristic for choosing algal species for biodiesel production” J. Appl. Phycol., 21, pp. 493-507, 2009.
  • [25] Swanson, D., Block, R., Mousa, S.A. “Omega-3 fatty acids EPA and DHA: health benefits throughout life“ Adv. Nutr., 3, pp. 1-7, 2012.
  • [26] Garcia, J.L., de Vicente, M., Galan, B. “Microalgae, old sustainable food and fashion nutraceuticals”. Microbial Biotechnology. 10:1017–24, 2017.
  • [27] Wang, Z.T., Ullrich, N., Joo, S., Waffenschmidt, S., Goodenough, U. “Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and Starchless Chlamydomonas reinhardtii” Eukaryot. Cell, 8, pp. 1856-1868, 2009.
  • [28] Koller, M., Muhr, A., Braunegg, G. “Microalgae as versatile cellular factories for valued products”. Algal Res., 6, pp. 52-63, 2014.
  • [29] Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A. G., Camire, M. E., Brawley, S.H. “Algae as nutritional and functional food sources: revisiting our understanding”. Journal of Applied Phycology 29:949–82, 2017.
  • [30] Elcik, H., Çakmakçı, M. “Mikroalg üretimi ve mikroalglerden biyoyakıt eldesi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 32(3): 795-820, 2017.
  • [31] Şişman-Aydın, G. “Mikroalg Teknolojisi ve Çevresel Kullanımı”. Harran Üniversitesi Mühendislik Dergisi, 4(1): 81- 92, 2019.
  • [32] Smetana S, Sandmann M, Rohn S, Pleissner, D, Heinz V. “Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment”. Bioresour Technol. 245:162–70, 2017.
  • [33] Ruiz, J., Olivieri, G., de Vree, J., Bosma, R., Willems, P., Reith, J.H., Eppink,M. H. M., Kleinegris, D. M. M., Wijffels, R. H., Barbosa, M. J. “Towards industrial products from microalgae”. Energy & Environmental Science.9:3036–43, 2016
  • [34] Chacón-Lee, T.L., González-Mariño, G.E. “Microalgae for “healthy” foodspossibilities and challenges”. Comprehensive Reviews in Food Science and Food Safety. 9:655, 2010
  • [35] Brennan L, Owende P. “Biofuels from microalgae–a review of technologies for production, processing, and extractions of biofuels and co-products”. Renew Sust Energy Rev. 14:557–77, 2008.
  • [36] Lam, G.P., Vermuë, M.H., Eppink, M.H.M., Wijffels, R.H., van den Berg, C. “Multi-product microalgae biorefineries: from concept towards reality”. Trends in Biotechnology 36:216–27, 2018.
  • [37] Sharma, N., Sharma, P. “Industrial and biotechnological applications of algae: a review”. Journal of Advances in Plant Biology. 1:1–26, 2017.
  • [38] Christenson L, Sims R. “Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts”. Biotechnology Advances 29:686–702, 2011.
  • [39] Chisti Y., Yan J. “Energy from algae: Current status and future trends: Algal biofuels – A status report”, Appl. Energy, 88 (10), 3277-3279, 2011.
  • [40] Caporgno, M.P., Bengoa, C. “Anaerobic digestion of microalgae: the benefits of digesting microalgae waste”. Current Biochemical Engineering Special Issue Biomethane 3:210–22, 2016.
  • [41] Gupta, S., Gupta, C., Garg, A.P., Prakash, D. “Probiotic efficiency of blue green algae on probiotics microorganisms”. Journal of Microbiology and Experimentation, 4(4): 00120, 2017.
  • [42] Kent, M,,Welladsen, H.M., Mangott, A., Li, Y. “Nutritional evaluation of Australian microalgae as potential human health supplements”. PLoS ONE. 10:e0118985, 2015.
  • [43] Lauritano, C., Andersen, J.H., Hansen, E., Albrigtsen, M., Escalera, L., Esposito, F., Helland, K., Hanssen, K., Romano, G., Ianora, A. “Bioactivity screening of microalgae for antioxidant, anti-inflammatory, anticancer, anti-diabetes, and antibacterial activities”. Frontiers in Marine Science 3:68, 2016.
  • [44] Admassu, H., Abdalbasit, M., Gasmalla, A., Yang, R., Zhao, W. “Bioactive peptides derived from seaweed protein and their health benefits: antihypertensive, antioxidant, and antidiabetic properties”. Journal of Food Science 83:6–16, 2017.
  • [45] Choe, E., Min, D.B. “Mechanisms of antioxidants in the oxidation of foods”. Comprehensive Reviews in Food Science and Food Safety 8:345–58, 2009.
  • [46] Asioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., Varela, P. “Making sense of the “clean label” trends: a review of consumer food choice behaviour and discussion of industry implications”. Food Research International 99:58–71, 2017.
  • [47] Raymundo, A., Gouveia, L., Batista, A.P., Empis, J., Sousa, I. “Fat mimetic capacity of Chlorella vulgaris biomass in oil-in-water food emulsions stabilised by pea protein”. Food Research International 38:961–65, 2005.
  • [48] Beheshtipour, H., Mortazavian, A.M., Mohammadi, R., Sohrabvandi, S., Khosravi-Darani, K. “Supplementation of Spirulina platensis and Chlorella vulgaris algae into probiotic fermented milks”. Comprehensive Reviews in Food Science and Food Safety 12:144–54, 2013.
  • [49] Batista, A.P., Nunes, M.C., Fradinho, P., Gouveia, L., Sousa, I., Raymundo, A., Franco, J. “Novel foods with microalgal ingredients-effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels”. Journal of Food Engineering 110:182–9, 2012.
  • [50] Jeon, J.K. “Effect of Chlorella addition on the quality of processed cheese” Journal of the Korean Society of Food Science and Nutrition 35:373–7, 2006.
  • [51] Darwish, A. “Physicochemical properties, bioactive compounds and antioxidant activity of kareish cheese fortified with Spirulina platensis”. World Journal of Dairy & Food Sciences 12 (2): 71-78, 2017.
  • [52] Gupta, S., Gupta, C., Garg, A.P., Prakash, D. “Probiotic efficiency of blue green algae on probiotics microorganisms”. Journal of Microbiology and Experimentation, 4(4): 00120, 2017.
  • [53] Mocanu, G.D., Botez, E., Nistor, O.V., Andronoiu, D.G., Vlăsceanu, G. “Influence of Spirulina platensis biomass over some starter culture of Lactic Bacteria”. Journal of Agroalimentary Processes and Technologies, 19(4), 474-479, 2013.
  • [54] Çeleklia, A., Alslibib, Z. A., Bozkurt, H. “Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food”. Algal Research 44 (2019) 101710, 2019.
  • [55] Gouveia, L., Batista, A.P., Miranda, A., Empis, J., Raymundo, A. “Chlorella vulgaris biomass used as coloring source in traditional butter cookies”. Innovative Food Science & Emerging Technologies 8:433–6, 2007.
  • [56] Gouveia, L., Coutinho, C., Mendonça, E., Batista, A.P., Sousa, I., Bandarra, N.M.,Raymundo, A. “Functional biscuits with PUFA-&3 from Isochrysis galbana”. Journal of the Science of Food Agriculture 88:891–6, 2008.
  • [57] Singh, P., Singh, R., Jha, A., Rasane, P., Gautam, A.K. “Optimization of a process for high fibre and high protein biscuit”. Journal of Food Science and Technology 52:1394–403, 2015.
  • [58] Batista, A.P., Niccolai, A., Fradinho, P., Fragoso, S., Bursic, I., Rodolfi, L., Biondi, N., Tredici,M. R., Sousa, I., Raymundo, A. “Microalgae biomass as an alternative ingredient in cookies: sensory, physical and chemical properties, antioxidant activity and in vitro digestibility”. Algal Research 26:161–71, 2017.
  • [59] Mofasser Hossain, A.K.M., Brennan, M.A., Mason, S.L., Guo, X., Zeng, X.A., Brennan, C.S. “The effect of astaxanthin-rich microalgae ‘Haematococcus pluvialis’ and wholemeal flours incorporation in improving the physical and functional properties of cookies”. Foods (2017) 6:57–67, 2017.
  • [60] Ak B, Avşaroğlu E, Işık O, Özyurt G, Kafkas E, Etyemez M, Uslu, L. “Nutritional and physicochemical characteristics of bread enriched with microalgae Spirulina platensis”. International Journal of Engineering Research and Application 6:30–8, 2016.
  • [61] Figueira, F.D.S., Crizel, T.D.M., Silva, C.R., Sallas-Mellado, M.D.L.M.S. “Elaboration of gluten-free bread enriched with the microalgae Spirulina platensis”. Brazilian Journal of Food Technology 14:308–16, 2011.
  • [62] Fradique, M., Batista, A., Nunes, M., Gouveia, L., Bandarra, N., Raymundo, A. “Incorporation of Chlorella vulgaris and Spirulina maxima biomass on pasta products. Part 1: preparation and evaluation”. Journal of the Science of Food and Agriculture 90:1656–64, 2010.
  • [63] Fradique, M., Batista, A.P., Nunes, M.C., Gouveia, L., Bandarra, N.M., Raymundo, A. “Isochrysis galbana and Diacronema vlkianum biomass incorporation in pasta products as PUFA’s source”. LWT - Food Science and Technology 50:312–9, 2013.
  • [64] El-Baz, F.K., Abdo, S.M., Hussein, A.M.S. “Microalgae Dunaliella salina for use as food supplement to improve pasta quality”. International Journal of Pharmaceutical Sciences Review and Research 46:45–51, 2017.
  • [65] Gouveia, L., Raymundo, A., Batista, A.P., Sousa, I., Empis, J. “Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions”. European Food Research and Technology 222:362–7, 2006.
  • [66] Ursu, A.V., Marcati, A., Sayd, T., Sante-Lhoutellier, V., Djelveh, G., Michaud, P. “Extraction, fractionation and functional properties of proteins from the microalgae Chlorella vulgaris”. Bioresource Technology 157:134–9, 2014.
Toplam 66 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği
Bölüm Derleme
Yazarlar

Zeynep Nale 0000-0003-1700-8597

Proje Numarası -
Yayımlanma Tarihi 30 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 4 Sayı: 1

Kaynak Göster

APA Nale, Z. (2021). Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler. Bayburt Üniversitesi Fen Bilimleri Dergisi, 4(1), 80-90.
AMA Nale Z. Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler. Bayburt Üniversitesi Fen Bilimleri Dergisi. Haziran 2021;4(1):80-90.
Chicago Nale, Zeynep. “Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler”. Bayburt Üniversitesi Fen Bilimleri Dergisi 4, sy. 1 (Haziran 2021): 80-90.
EndNote Nale Z (01 Haziran 2021) Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler. Bayburt Üniversitesi Fen Bilimleri Dergisi 4 1 80–90.
IEEE Z. Nale, “Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler”, Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 1, ss. 80–90, 2021.
ISNAD Nale, Zeynep. “Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler”. Bayburt Üniversitesi Fen Bilimleri Dergisi 4/1 (Haziran 2021), 80-90.
JAMA Nale Z. Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2021;4:80–90.
MLA Nale, Zeynep. “Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler”. Bayburt Üniversitesi Fen Bilimleri Dergisi, c. 4, sy. 1, 2021, ss. 80-90.
Vancouver Nale Z. Yenilikçi Gıda Ürünlerinin Geliştirilmesinde Alternatif Bir Kaynak:Mikroalgler. Bayburt Üniversitesi Fen Bilimleri Dergisi. 2021;4(1):80-9.

Taranılan Dizinler