Derleme
BibTex RIS Kaynak Göster

AN EXAMINATION ON CLOTH SIMULATION IN COMPUTER GRAPHICS

Yıl 2024, , 1 - 16, 12.07.2024
https://doi.org/10.20854/bujse.1395032

Öz

The fast and accurate modeling of concepts like fabric and clothing, which are real-world objects, to achieve realism in computer graphics, allowing for simulations such as folding, wrinkling, or draping on a model as it would occur in the physical world, remains an unresolved issue in today's context. Long-standing research has been conducted in an attempt to strike a balance between the computational cost of modeling fabric in a three-dimensional environment and achieving realism. This study aims to examine fabric modeling endeavors in their historical context and project the future of fabric modeling efforts. In this regard, the physical properties and formation of fabric are investigated, evaluated in the context of its utilization in computer graphics where fabric is translated from the physical environment to the two-dimensional realm. Subsequently, prevalent methods used in fabric modeling from the past to the present are examined and compared. Finally, studies related to fabric modeling at the yarn level and homogeneous yarn-level fabric modeling are reviewed, culminating in an assessment of the prospects of fabric modeling applications.

Kaynakça

  • Baraff, D. ve Witkin, A. (1998). Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (pp. 43–54). ACM Press. https://doi.org/10.1145/3596711.3596792
  • Bender, J., Müller, M., Otaduy, M. A., Teschner, M. ve Macklin, M. (2014). A survey on position‐based simulation methods in computer graphics. In Computer graphics forum (Vol. 33, No. 6, pp. 228-251). https://doi.org/10.1111/cgf.12346
  • Breen, D. E., House, D. H. ve Getto, P. H. (1992). A physically-based particle model of woven cloth. The Visual Computer, 8(5), 264-277.
  • Broadbent, A. D. (2001). Basic Principles of Textile Coloration. Society of Dyers and Colourists Publication. Casafranca, J. J., Cirio, G., Rodríguez, A., Miguel, E. ve Otaduy, M. A. (2020). Mixing yarns and triangles in cloth simulation. In Computer Graphics Forum (Vol. 39, No. 2, pp. 101-110). https://doi.org/10.1111/cgf.13915
  • Choi, K. J., ve Ko, H. S. (2005). Stable but responsive cloth. In ACM SIGGRAPH 2005 Courses (pp. 1-es). https://doi.org/10.1145/1198555.1198571
  • Cirio, G., Lopez-Moreno, J. ve Otaduy, M. A. (2017). Yarn-level cloth simulation with sliding persistent contacts. IEEE Transaction on Visulazitation and Computer Graphics, 23(2), 1152-1162. https://doi.org/10.1109/TVCG.2016.2592908
  • Cirio, G., Lopez-Moreno, J., Miraut, D. ve Otaduy, M. A. (2014). Yarn-level simulation of woven cloth. ACM Transactions on Graphics (TOG), 33(6), 1-11. https://doi.org/10.1145/2661229.2661279
  • Çelikkan Aydoğdu, S. H. ve Yılmaz, Demet (2019). Farklı Kılıf Lif Türü, İplik Numarası ve Öz Filament İnceliği Kullanılarak Üretilen Elastan İçerikli Özlü İpliklerin İplik ve Bazı Kumaş Özelliklerinin İncelenmesi. Tekstil ve Mühendis, 26(113), 2-13. https://doi.org/10.7216/1300759920192611301
  • Eberhardt, B., Weber, A. ve Strasser, W. (1996). A Fast, Flexible Particle System Model for Cloth Draping. IEEE Computer Graphics and Applications, 16(5), 52–59. https://doi.org/10.1109/38.536275 Feynman, C. R. (1986). Modeling the appearance of cloth (Doctoral dissertation, Massachusetts Institute of Technology). Hassan, M. M. (2018). Wool fabrics coated with an anionic Bunte salt-terminated polyether: Physicomechanical properties, stain resistance, and dyeability. Acs Omega, 3(12), 17656-17667. https://doi.org/10.1021/acsomega.8b02040
  • Haumann, D. R. ve Parent, R. E. (1988). The behavioral test-bed: Obtaining complex behavior from simple rules. The Visual Computer, 4(6), 332-347. https://doi.org/10.1007/BF01908878
  • Hayler, G., Bangay, S. ve Lobb, A. (2004). Implicit and Explicit Integration Methods in Cloth Simulation. Submitted in partial fulfillment of the requirements of the degree Bachelor of Science (Honours) of Rhodes University, 7th November.
  • Jakobsen, T. (2001). Advanced character physics. In Proceedings of Game Developer’s Conference (San Jose, 2001). San Jose.
  • Jin, Y., Shi, Z., Yang, J., Liu, Y., Qiao, X. ve Zhang, L. (2024). Deep Neural Network-Based Cloth Collision Detection Algorithm. Scientific Programming, 2024. https://doi.org/ 10.1155/2024/7889278
  • Kaldor, J. (2011). Simulating yarn-based cloth (Doctoral thesis). https://www.cs.cornell.edu/projects/YarnCloth/thesis_compressed.pdf
  • Kaldor, J. M., James, D. L. ve Marschner, S. (2008). Simulating knitted cloth at the yarn level. In SIGGRAPH '08: Special Interest Group on Computer Graphics and Interactive Techniques Conference 65 (pp. 1-9), Association for Computing Machinery, New York, US. https://doi.org/10.1145/1399504.1360664.
  • Kaldor, J. M., James, D. L. ve Marschner, S. (2010). Efficient yarn-based cloth with adaptive contact linearization. ACM Transaction on Graphics, 29(4), 1-10. https://doi.org/10.1145/1778765.1778842.
  • Kieran, E., Harrison, G. ve Openshaw, L. (2005). Cloth simulation. MSc Computer Animation, NCCA Bournemouth University, 47-61.
  • Lanzagorta, M. ve Uhlmann, J. K. (2005). Hybrid quantum-classical computing with applications to computer graphics. In ACM SIGGRAPH 2005 Courses (pp. 2-es). https://doi.org/10.1145/1198555.1198723 Li, X., Li, X. R., Li, Y. ve Feng, W. (2023). Review of cloth modeling and simulation for virtual fitting. Textile Research Journal, 93(7-8), 1699-1711. https://doi.org/10.1177/00405175221135625
  • Long, J., Burns, K. ve Yang, J. J. (2011, July). Cloth Modeling and Simulation: A Literature Survey, Digital Human Modeling-Third International Conference, ICDHM, Orlando, USA. https://doi.org/10.1007/978-3-642-21799-9_35
  • Lord, P. R. (2003). Handbook of Yarn Production: Technology, Science and Economics, Woodhead Publishing. ISBN: 1855738651, 9781855738652
  • Mao, M., Va, H., Lee, A. ve Hong, M. (2023). Supervised Video Cloth Simulation: Exploring Softness and Stiffness Variations on Fabric Types Using Deep Learning. Applied Sciences, 13(17), 9505. https://doi.org/10.3390/app13179505
  • MEB (2011). Tekstil Teknolojisi: Filament İplik Üretimi. TC. Milli Eğitim Bakanlığı Yayını, Ankara. Mutlu, S. (2011). Jüt Lifi ve Tekstil-Hazır Giyim Sektöründe Kullanım Alanları. Akdeniz Sanat, 4(8), 103-105.
  • Naujokaitytė, L., Strazdienė, E. ve Fridrichova, L. (2007). Comparative Analysis of Fabrics' Bending Behavior Testing Methods. Tekstil: Journal of Textile and Clothing Technology, 56(6), 350-357.
  • Pierce F. T. (1937) On the Geometry of Cloth Structure. In Journal of the Textile Institute, 28: T45 – T97. https://doi.org/10.1080/19447014908664605
  • Provot, X. (1995). Deformation constraints in a mass-spring model to describe rigid cloth behaviour. In Graphics interface (pp. 147-147). Canadian Information Processing Society.https://www.cs.rpi.edu/cutler/classes/advancedgraphics/S14/papers/provot_cloth_simulation_96.pdf
  • Rudomin, I. J. (1990). Simulating cloth using a mixed geometric-physical method. University of Pennsylvania.https://www.researchgate.net/publication/35515171_Simulating_cloth_using_a_mixed_geometric-physical_method
  • Salman, A. A., Saleh, S. S., Sharkas, M. ve Sakr, E. M. (2016). Bending propertiesof cotton fabrics produced from different spinning methods. Journal of Scientific Research in Science, 33(part1), 337-358. https://doi.org/10.21608/jsrs.2016.15311
  • Sperl, G., Narain, R. ve Wojtan, C. (2020). Homogenized yarn-level cloth. ACM Transactions on Graphics (TOG), 39(4), 48-1. https://doi.org/10.1145/3386569.3392412
  • Stuyck, T. (2018). Cloth simulation for computer graphics. Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography, and Imaging, 10(3), 1-121. https://doi.org/10.2200/S00867ED1V01Y201807VCP032
  • Stuyck, T. (2022). Cloth simulation for computer graphics. Springer Nature. https://doi.org/10.1007/978-3-031-02597-6
  • Ul Haq, I. ve Farooq, A. M. (2019). TryOn: An Augmented Reality Fitting Room. In Mobile Devices and Smart Gadgets in Human Rights, (pp. 98-131), IGI Global. https://doi.org/10.4018/978-1-5225-6939-8.ch005
  • Unreal Engine(a). (2023). Clothing Tool. Unreal Engine. https://docs.unrealengine.com/5.0/en-US/clothing-tool-in-unreal-engine/
  • Unreal Engine(b). (2023). Chaos Cloth Tool Overview. Unreal Engine. https://dev.epicgames.com/community/learning/tutorials/OPM3/unreal-engine-chaos-cloth-tool-overview
  • Weil, J. (1986). The synthesis of cloth objects. ACM Siggraph Computer Graphics, 20(4), 49-54. https://doi.org/10.1145/15886.15891
  • Wu, Y. (2024). How AI is leading the textile industry to a new lease on life. AMT Lab @ CMU. https://amt-lab.org/blog/2024/1/how-ai-is-leading-the-textile-industry-to-a-new-lease-on-life
  • Xiang, D. (2023). Modeling Dynamic Clothing for Data-Driven Photorealistic Avatars. In SIGGRAPH Asia 2023 Doctoral Consortium (pp. 1-5). https://doi.org/10.1145/3623053.3623373
  • Yaşar, N. (2016). Dokuma Kumaşlarda İplik Özelliklerinin Giysi Form ve Görünümlerine Etkileri. Yedi, (15), 173-184. https://doi.org/10.17484/yedi.85625
  • Zhu, H., Gao, Z. ve Xu, L. (2023, November). Cloth simulation based on neural network regression. In 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) (pp. 658-664). IEEE. https://doi.org/ 10.1109/ICICML60161.2023.10424751

BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME

Yıl 2024, , 1 - 16, 12.07.2024
https://doi.org/10.20854/bujse.1395032

Öz

Gerçek dünya nesneleri olan kumaş ve giysi gibi kavramların bilgisayar grafiklerinde gerçekçiliğini sağlayacak şekilde hızlıca modellenerek, bir model üzerinde gerçek dünyada olduğu gibi katlanması, kırışması veya yayılması gibi durumların animasyonunun oluşturulması günümüzde tam olarak çözülememiş bir konudur. Uzun yıllardır devam eden çalışmalar, üç boyutlu ortamdaki kumaş modellemesini hesaplama maliyeti ile gerçekçilik arasında kurulmaya çalışılan denge esasınca yürütülmektedir. Bu çalışmanın amacı, kumaş modelleme çalışmalarını tarihsel bağlamı da dikkate alacak şekilde incelemek ve kumaş modelleme çalışmalarının geleceğine dair bir projeksiyon oluşturmaktır. Bu doğrultuda, kumaşın fiziksel özellikleri ve oluşumu incelenerek, tarihsel açıdan fiziksel ortamdan iki boyutlu ortama aktarılan kumaşın bilgisayar grafiklerindeki kullanımı bağlamında değerlendirilmektedir. Ardından kumaş modellemesine ilişkin geçmişten günümüze kullanılan yaygın yöntemler incelenerek karşılaştırılmış. Son olarak iplik düzeyinde kumaş modelleme ile homojen iplik düzeyinde kumaş modelleme ile ilgili çalışmalar incelenmiş ve kumaş modelleme uygulamalarının geleceğine ilişkin bir değerlendirme yapılmıştır.

Kaynakça

  • Baraff, D. ve Witkin, A. (1998). Large steps in cloth simulation. In Proceedings of the 25th annual conference on Computer graphics and interactive techniques (pp. 43–54). ACM Press. https://doi.org/10.1145/3596711.3596792
  • Bender, J., Müller, M., Otaduy, M. A., Teschner, M. ve Macklin, M. (2014). A survey on position‐based simulation methods in computer graphics. In Computer graphics forum (Vol. 33, No. 6, pp. 228-251). https://doi.org/10.1111/cgf.12346
  • Breen, D. E., House, D. H. ve Getto, P. H. (1992). A physically-based particle model of woven cloth. The Visual Computer, 8(5), 264-277.
  • Broadbent, A. D. (2001). Basic Principles of Textile Coloration. Society of Dyers and Colourists Publication. Casafranca, J. J., Cirio, G., Rodríguez, A., Miguel, E. ve Otaduy, M. A. (2020). Mixing yarns and triangles in cloth simulation. In Computer Graphics Forum (Vol. 39, No. 2, pp. 101-110). https://doi.org/10.1111/cgf.13915
  • Choi, K. J., ve Ko, H. S. (2005). Stable but responsive cloth. In ACM SIGGRAPH 2005 Courses (pp. 1-es). https://doi.org/10.1145/1198555.1198571
  • Cirio, G., Lopez-Moreno, J. ve Otaduy, M. A. (2017). Yarn-level cloth simulation with sliding persistent contacts. IEEE Transaction on Visulazitation and Computer Graphics, 23(2), 1152-1162. https://doi.org/10.1109/TVCG.2016.2592908
  • Cirio, G., Lopez-Moreno, J., Miraut, D. ve Otaduy, M. A. (2014). Yarn-level simulation of woven cloth. ACM Transactions on Graphics (TOG), 33(6), 1-11. https://doi.org/10.1145/2661229.2661279
  • Çelikkan Aydoğdu, S. H. ve Yılmaz, Demet (2019). Farklı Kılıf Lif Türü, İplik Numarası ve Öz Filament İnceliği Kullanılarak Üretilen Elastan İçerikli Özlü İpliklerin İplik ve Bazı Kumaş Özelliklerinin İncelenmesi. Tekstil ve Mühendis, 26(113), 2-13. https://doi.org/10.7216/1300759920192611301
  • Eberhardt, B., Weber, A. ve Strasser, W. (1996). A Fast, Flexible Particle System Model for Cloth Draping. IEEE Computer Graphics and Applications, 16(5), 52–59. https://doi.org/10.1109/38.536275 Feynman, C. R. (1986). Modeling the appearance of cloth (Doctoral dissertation, Massachusetts Institute of Technology). Hassan, M. M. (2018). Wool fabrics coated with an anionic Bunte salt-terminated polyether: Physicomechanical properties, stain resistance, and dyeability. Acs Omega, 3(12), 17656-17667. https://doi.org/10.1021/acsomega.8b02040
  • Haumann, D. R. ve Parent, R. E. (1988). The behavioral test-bed: Obtaining complex behavior from simple rules. The Visual Computer, 4(6), 332-347. https://doi.org/10.1007/BF01908878
  • Hayler, G., Bangay, S. ve Lobb, A. (2004). Implicit and Explicit Integration Methods in Cloth Simulation. Submitted in partial fulfillment of the requirements of the degree Bachelor of Science (Honours) of Rhodes University, 7th November.
  • Jakobsen, T. (2001). Advanced character physics. In Proceedings of Game Developer’s Conference (San Jose, 2001). San Jose.
  • Jin, Y., Shi, Z., Yang, J., Liu, Y., Qiao, X. ve Zhang, L. (2024). Deep Neural Network-Based Cloth Collision Detection Algorithm. Scientific Programming, 2024. https://doi.org/ 10.1155/2024/7889278
  • Kaldor, J. (2011). Simulating yarn-based cloth (Doctoral thesis). https://www.cs.cornell.edu/projects/YarnCloth/thesis_compressed.pdf
  • Kaldor, J. M., James, D. L. ve Marschner, S. (2008). Simulating knitted cloth at the yarn level. In SIGGRAPH '08: Special Interest Group on Computer Graphics and Interactive Techniques Conference 65 (pp. 1-9), Association for Computing Machinery, New York, US. https://doi.org/10.1145/1399504.1360664.
  • Kaldor, J. M., James, D. L. ve Marschner, S. (2010). Efficient yarn-based cloth with adaptive contact linearization. ACM Transaction on Graphics, 29(4), 1-10. https://doi.org/10.1145/1778765.1778842.
  • Kieran, E., Harrison, G. ve Openshaw, L. (2005). Cloth simulation. MSc Computer Animation, NCCA Bournemouth University, 47-61.
  • Lanzagorta, M. ve Uhlmann, J. K. (2005). Hybrid quantum-classical computing with applications to computer graphics. In ACM SIGGRAPH 2005 Courses (pp. 2-es). https://doi.org/10.1145/1198555.1198723 Li, X., Li, X. R., Li, Y. ve Feng, W. (2023). Review of cloth modeling and simulation for virtual fitting. Textile Research Journal, 93(7-8), 1699-1711. https://doi.org/10.1177/00405175221135625
  • Long, J., Burns, K. ve Yang, J. J. (2011, July). Cloth Modeling and Simulation: A Literature Survey, Digital Human Modeling-Third International Conference, ICDHM, Orlando, USA. https://doi.org/10.1007/978-3-642-21799-9_35
  • Lord, P. R. (2003). Handbook of Yarn Production: Technology, Science and Economics, Woodhead Publishing. ISBN: 1855738651, 9781855738652
  • Mao, M., Va, H., Lee, A. ve Hong, M. (2023). Supervised Video Cloth Simulation: Exploring Softness and Stiffness Variations on Fabric Types Using Deep Learning. Applied Sciences, 13(17), 9505. https://doi.org/10.3390/app13179505
  • MEB (2011). Tekstil Teknolojisi: Filament İplik Üretimi. TC. Milli Eğitim Bakanlığı Yayını, Ankara. Mutlu, S. (2011). Jüt Lifi ve Tekstil-Hazır Giyim Sektöründe Kullanım Alanları. Akdeniz Sanat, 4(8), 103-105.
  • Naujokaitytė, L., Strazdienė, E. ve Fridrichova, L. (2007). Comparative Analysis of Fabrics' Bending Behavior Testing Methods. Tekstil: Journal of Textile and Clothing Technology, 56(6), 350-357.
  • Pierce F. T. (1937) On the Geometry of Cloth Structure. In Journal of the Textile Institute, 28: T45 – T97. https://doi.org/10.1080/19447014908664605
  • Provot, X. (1995). Deformation constraints in a mass-spring model to describe rigid cloth behaviour. In Graphics interface (pp. 147-147). Canadian Information Processing Society.https://www.cs.rpi.edu/cutler/classes/advancedgraphics/S14/papers/provot_cloth_simulation_96.pdf
  • Rudomin, I. J. (1990). Simulating cloth using a mixed geometric-physical method. University of Pennsylvania.https://www.researchgate.net/publication/35515171_Simulating_cloth_using_a_mixed_geometric-physical_method
  • Salman, A. A., Saleh, S. S., Sharkas, M. ve Sakr, E. M. (2016). Bending propertiesof cotton fabrics produced from different spinning methods. Journal of Scientific Research in Science, 33(part1), 337-358. https://doi.org/10.21608/jsrs.2016.15311
  • Sperl, G., Narain, R. ve Wojtan, C. (2020). Homogenized yarn-level cloth. ACM Transactions on Graphics (TOG), 39(4), 48-1. https://doi.org/10.1145/3386569.3392412
  • Stuyck, T. (2018). Cloth simulation for computer graphics. Synthesis Lectures on Visual Computing: Computer Graphics, Animation, Computational Photography, and Imaging, 10(3), 1-121. https://doi.org/10.2200/S00867ED1V01Y201807VCP032
  • Stuyck, T. (2022). Cloth simulation for computer graphics. Springer Nature. https://doi.org/10.1007/978-3-031-02597-6
  • Ul Haq, I. ve Farooq, A. M. (2019). TryOn: An Augmented Reality Fitting Room. In Mobile Devices and Smart Gadgets in Human Rights, (pp. 98-131), IGI Global. https://doi.org/10.4018/978-1-5225-6939-8.ch005
  • Unreal Engine(a). (2023). Clothing Tool. Unreal Engine. https://docs.unrealengine.com/5.0/en-US/clothing-tool-in-unreal-engine/
  • Unreal Engine(b). (2023). Chaos Cloth Tool Overview. Unreal Engine. https://dev.epicgames.com/community/learning/tutorials/OPM3/unreal-engine-chaos-cloth-tool-overview
  • Weil, J. (1986). The synthesis of cloth objects. ACM Siggraph Computer Graphics, 20(4), 49-54. https://doi.org/10.1145/15886.15891
  • Wu, Y. (2024). How AI is leading the textile industry to a new lease on life. AMT Lab @ CMU. https://amt-lab.org/blog/2024/1/how-ai-is-leading-the-textile-industry-to-a-new-lease-on-life
  • Xiang, D. (2023). Modeling Dynamic Clothing for Data-Driven Photorealistic Avatars. In SIGGRAPH Asia 2023 Doctoral Consortium (pp. 1-5). https://doi.org/10.1145/3623053.3623373
  • Yaşar, N. (2016). Dokuma Kumaşlarda İplik Özelliklerinin Giysi Form ve Görünümlerine Etkileri. Yedi, (15), 173-184. https://doi.org/10.17484/yedi.85625
  • Zhu, H., Gao, Z. ve Xu, L. (2023, November). Cloth simulation based on neural network regression. In 2023 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) (pp. 658-664). IEEE. https://doi.org/ 10.1109/ICICML60161.2023.10424751
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hesaplamalı Görüntüleme, Bilgisayar Yazılımı
Bölüm Makaleler
Yazarlar

Uğur Güven Adar 0000-0003-3807-2176

Ediz Şaykol 0000-0002-8950-5114

Yayımlanma Tarihi 12 Temmuz 2024
Gönderilme Tarihi 23 Kasım 2023
Kabul Tarihi 29 Haziran 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Adar, U. G., & Şaykol, E. (2024). BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 17(1), 1-16. https://doi.org/10.20854/bujse.1395032
AMA Adar UG, Şaykol E. BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME. BUJSE. Temmuz 2024;17(1):1-16. doi:10.20854/bujse.1395032
Chicago Adar, Uğur Güven, ve Ediz Şaykol. “BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 17, sy. 1 (Temmuz 2024): 1-16. https://doi.org/10.20854/bujse.1395032.
EndNote Adar UG, Şaykol E (01 Temmuz 2024) BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 17 1 1–16.
IEEE U. G. Adar ve E. Şaykol, “BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME”, BUJSE, c. 17, sy. 1, ss. 1–16, 2024, doi: 10.20854/bujse.1395032.
ISNAD Adar, Uğur Güven - Şaykol, Ediz. “BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME”. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 17/1 (Temmuz 2024), 1-16. https://doi.org/10.20854/bujse.1395032.
JAMA Adar UG, Şaykol E. BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME. BUJSE. 2024;17:1–16.
MLA Adar, Uğur Güven ve Ediz Şaykol. “BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 17, sy. 1, 2024, ss. 1-16, doi:10.20854/bujse.1395032.
Vancouver Adar UG, Şaykol E. BİLGİSAYAR GRAFİKLERİNDE KUMAŞ SİMÜLASYONU ÜZERİNE BİR İNCELEME. BUJSE. 2024;17(1):1-16.