Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, , 5 - 14, 09.04.2021
https://doi.org/10.20854/bujse.829417

Öz

Kaynakça

  • [1] Margottini, C. (2013). Landslide Science and Practice. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31319-6
  • [2] Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43(1), 27–29. https://doi.org/10.1007/BF02590167
  • [3] Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
  • [4] Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927–930. https://doi.org/10.1130/G33217.1
  • [5] Fisher, D., Hagon, K., Swithern, S., & Walmsley, L. (2018). World Disasters Report 2018. International Federation of Red Cross and Red Crescent Societies.
  • [6] Costa, J., & Wieczorek, G. (1987). Debris Flows/Avalanches: Process, Recognition, and Mitigation. The Geological Society of America.
  • [7] Cruden, D., & Varnes, D. (1996). Landslides: Investigation and Mitigation. Chapter 3 - Landslide Types and Processes. Transportation Research Board.
  • [8] Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238. https://doi.org/10.2113/gseegeosci.7.3.221
  • [9] Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. https://doi.org/10.1002/esp.1064
  • [10] Clague, J., & Stead, D. (2012). Landslides. Cambridge University Press. https://doi.org/10.1017/CBO9780511740367
  • [11] Nowicki Jessee, M. A., Hamburger, M. W., Ferrara, M. R., McLean, A., & FitzGerald, C. (2020). A global dataset and model of earthquake-induced landslide fatalities. Landslides. https://doi.org/10.1007/s10346-020-01356-z
  • [12] Valagussa, A., Marc, O., Frattini, P., & Crosta, G. B. (2019). Seismic and geological controls on earthquake-induced landslide size. Earth and Planetary Science Letters, 506, 268–281. https://doi.org/10.1016/j.epsl.2018.11.005
  • [13] Schuster, R., & Highland, L. (2001). Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere. United States Geological Survey.
  • [14] Bird, J. F., & Bommer, J. J. (2004). Earthquake losses due to ground failure. Engineering Geology, 75(2), 147–179. https://doi.org/10.1016/j.enggeo.2004.05.006
  • [15] Bommer, J. J., & Rodrı́guez, C. E. (2002). Earthquake-induced landslides in Central America. Engineering Geology, 63(3–4), 189–220. https://doi.org/10.1016/S0013-7952(01)00081-3
  • [16] Dunning, S. A., Mitchell, W. A., Rosser, N. J., & Petley, D. N. (2007). The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Engineering Geology, 93(3–4), 130–144. https://doi.org/10.1016/j.enggeo.2007.07.003
  • [17] Yin, Y., Wang, F., & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6(2), 139–152. https://doi.org/10.1007/s10346-009-0148-5
  • [18] Delgado, J., Rodríguez-Peces, M. J., García-Tortosa, F. J., Garrido, J., Martín, I., & Alfaro, P. (2017). Seismic-Induced Landslides: Lessons Learned from Recent Earthquakes in Spain. In Advancing Culture of Living with Landslides (pp. 111–117). https://doi.org/10.1007/978-3-319-53485-5_12
  • [19] Keefer, D. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
  • [20] Jiang, Y. (1989). Slope Analysis Using Boundary Elements. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-83918-4
  • [21] Zdravković, L., & Potts, D. M. (2020). Keynote Lecture: Application of Advanced Numerical Analysis in Geotechnical Engineering Design (pp. 1009–1022). https://doi.org/10.1007/978-981-15-2184-3_132
  • [22] Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, W. A. W., & Muazu, M. A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32(2), 495–518. https://doi.org/10.1007/s00521-019-04109-9
  • [23] Zhang, J., Zhang, L. M., & Tang, W. H. (2011). Slope Reliability Analysis Considering Site-Specific Performance Information. Journal of Geotechnical and Geoenvironmental Engineering, 137(3), 227–238. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000422
  • [24] Stead, D., Eberhardt, E., & Coggan, J. S. (2006). Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Engineering Geology, 83(1–3), 217–235. https://doi.org/10.1016/j.enggeo.2005.06.033
  • [25] Dawson, E. M., Roth, W. H., & Drescher, A. (1999). Slope stability analysis by strength reduction. Géotechnique, 49(6), 835–840. https://doi.org/10.1680/geot.1999.49.6.835
  • [26] Lane, P. A., & Griffiths, D. V. (2000). Assessment of Stability of Slopes under Drawdown Conditions. Journal of Geotechnical and Geoenvironmental Engineering, 126(5), 443–450. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(443)
  • [27] Berilgen, M. M. (2007). Investigation of stability of slopes under drawdown conditions. Computers and Geotechnics, 34(2), 81–91. https://doi.org/10.1016/j.compgeo.2006.10.004
  • [28] Heitzler, M., Lam, J. C., Hackl, J., Adey, B. T., & Hurni, L. (2017). GPU-Accelerated Rendering Methods to Visually Analyze Large-Scale Disaster Simulation Data. Journal of Geovisualization and Spatial Analysis, 1(1–2), 3. https://doi.org/10.1007/s41651-017-0004-4
  • [29] Luino, F., De Graff, J., Roccati, A., Biddoccu, M., Cirio, C. G., Faccini, F., & Turconi, L. (2019). Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water, 12(1), 133. https://doi.org/10.3390/w12010133
  • [30] Şahin, C., & Sipahioğlu, Ş. (2003). Doğal Afetler ve Türkiye. Gunduz Egitim ve Yay.
  • [31] Duman, T. Y., Çan, T., Emre, Ö., Keçer, M., Doğan, A., Ateş, Ş., & Durmaz, S. (2005). Landslide inventory of northwestern Anatolia, Turkey. Engineering Geology, 77(1–2), 99–114. https://doi.org/10.1016/j.enggeo.2004.08.005
  • [32] MGM, Meteoroloji Genel Müdürlüğü, Zonguldak İli Hava Durumu, http://www.mgm.gov.tr (Ocak 2020)
  • [33] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. https://doi.org/10.1016/j.epsl.2008.07.020
  • [34] Ketin, I. (1983). The overview of the geology of Turkey. Istanbul Technical University, Mining Faculty Special Publications.
  • [35] Okay, A. I., & Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5–8), 1051–1076. https://doi.org/10.1080/00206814.2015.1010609
  • [36] Okay, A. I., Altiner, D., Sunal, G., Aygül, M., Akdoğan, R., Altiner, S., & Simmons, M. (2018). Geological evolution of the Central Pontides. Geological Society, London, Special Publications, 464(1), 33–67. https://doi.org/10.1144/SP464.3
  • [37] Agan, C. (2009). Farklı Geoteknik Yöntemlerin Heyelan Analizlerinde Kullanımı Ve Karşılaştırmalı Analiz: Zonguldak İli Kozlu İlçesinde Örnek Bir Çalışma. Doktora Tezi.
  • [38] Bacak, G., & Yilmazer, S. (2011). The Petrographical-Geochemical Properties and Industrial Availability of the Karadeniz Eregli Andesites (Zonguldak). Karaelmas Fen ve Mühendislik Dergisi, 1(1).
  • [39] DAD, Deprem Araştırma Dairesi, http://deprem.afad.gov.tr, Ocak 2020
  • [40] Chen, S.-H. (2019). Computational Geomechanics and Hydraulic Structures. Springer Singapore. https://doi.org/10.1007/978-981-10-8135-4
  • [41] Zienkiewicz, O. (1977). The Finite Element Method (3rd.). McGraw-Hill.
  • [42] Schanz, T. (2007). Experimental Unsaturated Soil Mechanics. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-69873-6
  • [43] Brinkgreve, R., Kumarswamy, S. ve Swolfs, W. (2017). PLAXIS Manual, Delft: Delft University of Technology.
  • [44] Biot, M. A. (1955). Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. Journal of Applied Physics, 26(2), 182–185. https://doi.org/10.1063/1.1721956
  • [45] Wang, Z., & Mei, G. (2012). Numerical Analysis of Seismic Performance of Embankment Supported by Micropiles. Marine Georesources & Geotechnology, 30(1), 52–62. https://doi.org/10.1080/1064119X.2011.572580

Sonlu Elemanlar Yöntemi ile Depreme Bağlı Heyelan Tehlike Modelleme

Yıl 2020, , 5 - 14, 09.04.2021
https://doi.org/10.20854/bujse.829417

Öz

Heyelanlar yerçekimi doğrultusunda toprak, kaya ve organik malzemelerin hareketinden kaynaklı çok karmaşık jeomorfolojik olaylardır. Sayısal modeller, bu jeomorfolojik davranışların ve onların çevre ile etkileşimlerini tahmin etmek etmeye yarayan matematiksel tanımları ifade etmektedir. Sonlu elemanlar yönteminde sayısal model yaklaşımları kullanılarak çok karmaşık fiziksel denklemler basit olarak simüle edilebilmektedir. Bu çalışmada Zonguldak ili, Kozlu İlçesinde heyelan potansiyeli oluşturabilecek bir alan, sayısal olarak modellenerek statik ve dinamik yük altında nasıl bir davranış gerçekleştireceği sonlu elemanlar yöntemi yardımıyla incelenmiştir. Statik analizlerde çalışma alanında yapılan sondaj verilerinden faydalanılarak, gerçeğe uygun zemin parametreleri modele yansıtılmıştır. Buna göre şevin kararlı durumunda çevrede var olan bina yükleri göz ardı edildiğinde, model heyelanın akma bölgesinde maksimum yer değiştirmeler 30 cm olarak elde edilmiştir. Ayrıca, bölgenin depremselliğine uygun olarak seçilen Mw 7.1 Düzce depremi ivme kaydı modelde kullanılarak, potansiyel heyelan bölgesinin dinamik davranışı incelenmiştir. Dinamik analizlerde, kararlı durum değişerek, çalışma alanında depreme bağlı göçme ve yer değiştirme hareketleri elde edilmiştir. Buna göre en büyük düşey ve yatay yer değiştirmeler 40-50 cm civarında topuk kısmında elde edilmiştir. Deprem anında zayıf zeminin ve ortalama 20° eğimin etkisiyle, zeminde jeomorfolojik deformasyonlar meydana geldiği gözlenmiştir. Tüm analizler değerlendirildiğine, olası bir deprem anında çalışma bölgesinde var olan yerleşim yerlerinde can ve mal kayıplarının yaşanmaması için, bölgede afet tehlikesi azaltma yöntemlerinin uygulanması gerekliliği tespit edilmiştir.

Kaynakça

  • [1] Margottini, C. (2013). Landslide Science and Practice. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-31319-6
  • [2] Cruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology, 43(1), 27–29. https://doi.org/10.1007/BF02590167
  • [3] Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
  • [4] Petley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927–930. https://doi.org/10.1130/G33217.1
  • [5] Fisher, D., Hagon, K., Swithern, S., & Walmsley, L. (2018). World Disasters Report 2018. International Federation of Red Cross and Red Crescent Societies.
  • [6] Costa, J., & Wieczorek, G. (1987). Debris Flows/Avalanches: Process, Recognition, and Mitigation. The Geological Society of America.
  • [7] Cruden, D., & Varnes, D. (1996). Landslides: Investigation and Mitigation. Chapter 3 - Landslide Types and Processes. Transportation Research Board.
  • [8] Hungr, O., Evans, S. G., Bovis, M. J., & Hutchinson, J. N. (2001). A review of the classification of landslides of the flow type. Environmental and Engineering Geoscience, 7(3), 221–238. https://doi.org/10.2113/gseegeosci.7.3.221
  • [9] Malamud, B. D., Turcotte, D. L., Guzzetti, F., & Reichenbach, P. (2004). Landslide inventories and their statistical properties. Earth Surface Processes and Landforms, 29(6), 687–711. https://doi.org/10.1002/esp.1064
  • [10] Clague, J., & Stead, D. (2012). Landslides. Cambridge University Press. https://doi.org/10.1017/CBO9780511740367
  • [11] Nowicki Jessee, M. A., Hamburger, M. W., Ferrara, M. R., McLean, A., & FitzGerald, C. (2020). A global dataset and model of earthquake-induced landslide fatalities. Landslides. https://doi.org/10.1007/s10346-020-01356-z
  • [12] Valagussa, A., Marc, O., Frattini, P., & Crosta, G. B. (2019). Seismic and geological controls on earthquake-induced landslide size. Earth and Planetary Science Letters, 506, 268–281. https://doi.org/10.1016/j.epsl.2018.11.005
  • [13] Schuster, R., & Highland, L. (2001). Socioeconomic and Environmental Impacts of Landslides in the Western Hemisphere. United States Geological Survey.
  • [14] Bird, J. F., & Bommer, J. J. (2004). Earthquake losses due to ground failure. Engineering Geology, 75(2), 147–179. https://doi.org/10.1016/j.enggeo.2004.05.006
  • [15] Bommer, J. J., & Rodrı́guez, C. E. (2002). Earthquake-induced landslides in Central America. Engineering Geology, 63(3–4), 189–220. https://doi.org/10.1016/S0013-7952(01)00081-3
  • [16] Dunning, S. A., Mitchell, W. A., Rosser, N. J., & Petley, D. N. (2007). The Hattian Bala rock avalanche and associated landslides triggered by the Kashmir Earthquake of 8 October 2005. Engineering Geology, 93(3–4), 130–144. https://doi.org/10.1016/j.enggeo.2007.07.003
  • [17] Yin, Y., Wang, F., & Sun, P. (2009). Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides, 6(2), 139–152. https://doi.org/10.1007/s10346-009-0148-5
  • [18] Delgado, J., Rodríguez-Peces, M. J., García-Tortosa, F. J., Garrido, J., Martín, I., & Alfaro, P. (2017). Seismic-Induced Landslides: Lessons Learned from Recent Earthquakes in Spain. In Advancing Culture of Living with Landslides (pp. 111–117). https://doi.org/10.1007/978-3-319-53485-5_12
  • [19] Keefer, D. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406. https://doi.org/10.1130/0016-7606(1984)95<406:LCBE>2.0.CO;2
  • [20] Jiang, Y. (1989). Slope Analysis Using Boundary Elements. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-83918-4
  • [21] Zdravković, L., & Potts, D. M. (2020). Keynote Lecture: Application of Advanced Numerical Analysis in Geotechnical Engineering Design (pp. 1009–1022). https://doi.org/10.1007/978-981-15-2184-3_132
  • [22] Moayedi, H., Mosallanezhad, M., Rashid, A. S. A., Jusoh, W. A. W., & Muazu, M. A. (2020). A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32(2), 495–518. https://doi.org/10.1007/s00521-019-04109-9
  • [23] Zhang, J., Zhang, L. M., & Tang, W. H. (2011). Slope Reliability Analysis Considering Site-Specific Performance Information. Journal of Geotechnical and Geoenvironmental Engineering, 137(3), 227–238. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000422
  • [24] Stead, D., Eberhardt, E., & Coggan, J. S. (2006). Developments in the characterization of complex rock slope deformation and failure using numerical modelling techniques. Engineering Geology, 83(1–3), 217–235. https://doi.org/10.1016/j.enggeo.2005.06.033
  • [25] Dawson, E. M., Roth, W. H., & Drescher, A. (1999). Slope stability analysis by strength reduction. Géotechnique, 49(6), 835–840. https://doi.org/10.1680/geot.1999.49.6.835
  • [26] Lane, P. A., & Griffiths, D. V. (2000). Assessment of Stability of Slopes under Drawdown Conditions. Journal of Geotechnical and Geoenvironmental Engineering, 126(5), 443–450. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(443)
  • [27] Berilgen, M. M. (2007). Investigation of stability of slopes under drawdown conditions. Computers and Geotechnics, 34(2), 81–91. https://doi.org/10.1016/j.compgeo.2006.10.004
  • [28] Heitzler, M., Lam, J. C., Hackl, J., Adey, B. T., & Hurni, L. (2017). GPU-Accelerated Rendering Methods to Visually Analyze Large-Scale Disaster Simulation Data. Journal of Geovisualization and Spatial Analysis, 1(1–2), 3. https://doi.org/10.1007/s41651-017-0004-4
  • [29] Luino, F., De Graff, J., Roccati, A., Biddoccu, M., Cirio, C. G., Faccini, F., & Turconi, L. (2019). Eighty Years of Data Collected for the Determination of Rainfall Threshold Triggering Shallow Landslides and Mud-Debris Flows in the Alps. Water, 12(1), 133. https://doi.org/10.3390/w12010133
  • [30] Şahin, C., & Sipahioğlu, Ş. (2003). Doğal Afetler ve Türkiye. Gunduz Egitim ve Yay.
  • [31] Duman, T. Y., Çan, T., Emre, Ö., Keçer, M., Doğan, A., Ateş, Ş., & Durmaz, S. (2005). Landslide inventory of northwestern Anatolia, Turkey. Engineering Geology, 77(1–2), 99–114. https://doi.org/10.1016/j.enggeo.2004.08.005
  • [32] MGM, Meteoroloji Genel Müdürlüğü, Zonguldak İli Hava Durumu, http://www.mgm.gov.tr (Ocak 2020)
  • [33] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. https://doi.org/10.1016/j.epsl.2008.07.020
  • [34] Ketin, I. (1983). The overview of the geology of Turkey. Istanbul Technical University, Mining Faculty Special Publications.
  • [35] Okay, A. I., & Nikishin, A. M. (2015). Tectonic evolution of the southern margin of Laurasia in the Black Sea region. International Geology Review, 57(5–8), 1051–1076. https://doi.org/10.1080/00206814.2015.1010609
  • [36] Okay, A. I., Altiner, D., Sunal, G., Aygül, M., Akdoğan, R., Altiner, S., & Simmons, M. (2018). Geological evolution of the Central Pontides. Geological Society, London, Special Publications, 464(1), 33–67. https://doi.org/10.1144/SP464.3
  • [37] Agan, C. (2009). Farklı Geoteknik Yöntemlerin Heyelan Analizlerinde Kullanımı Ve Karşılaştırmalı Analiz: Zonguldak İli Kozlu İlçesinde Örnek Bir Çalışma. Doktora Tezi.
  • [38] Bacak, G., & Yilmazer, S. (2011). The Petrographical-Geochemical Properties and Industrial Availability of the Karadeniz Eregli Andesites (Zonguldak). Karaelmas Fen ve Mühendislik Dergisi, 1(1).
  • [39] DAD, Deprem Araştırma Dairesi, http://deprem.afad.gov.tr, Ocak 2020
  • [40] Chen, S.-H. (2019). Computational Geomechanics and Hydraulic Structures. Springer Singapore. https://doi.org/10.1007/978-981-10-8135-4
  • [41] Zienkiewicz, O. (1977). The Finite Element Method (3rd.). McGraw-Hill.
  • [42] Schanz, T. (2007). Experimental Unsaturated Soil Mechanics. Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-69873-6
  • [43] Brinkgreve, R., Kumarswamy, S. ve Swolfs, W. (2017). PLAXIS Manual, Delft: Delft University of Technology.
  • [44] Biot, M. A. (1955). Theory of Elasticity and Consolidation for a Porous Anisotropic Solid. Journal of Applied Physics, 26(2), 182–185. https://doi.org/10.1063/1.1721956
  • [45] Wang, Z., & Mei, G. (2012). Numerical Analysis of Seismic Performance of Embankment Supported by Micropiles. Marine Georesources & Geotechnology, 30(1), 52–62. https://doi.org/10.1080/1064119X.2011.572580
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatih Sunbul 0000-0002-3590-374X

Ayse Bengu Sunbul

Yayımlanma Tarihi 9 Nisan 2021
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Sunbul, F., & Sunbul, A. B. (2021). Sonlu Elemanlar Yöntemi ile Depreme Bağlı Heyelan Tehlike Modelleme. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 13(2), 5-14. https://doi.org/10.20854/bujse.829417
AMA Sunbul F, Sunbul AB. Sonlu Elemanlar Yöntemi ile Depreme Bağlı Heyelan Tehlike Modelleme. BUJSE. Nisan 2021;13(2):5-14. doi:10.20854/bujse.829417
Chicago Sunbul, Fatih, ve Ayse Bengu Sunbul. “Sonlu Elemanlar Yöntemi Ile Depreme Bağlı Heyelan Tehlike Modelleme”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 13, sy. 2 (Nisan 2021): 5-14. https://doi.org/10.20854/bujse.829417.
EndNote Sunbul F, Sunbul AB (01 Nisan 2021) Sonlu Elemanlar Yöntemi ile Depreme Bağlı Heyelan Tehlike Modelleme. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 13 2 5–14.
IEEE F. Sunbul ve A. B. Sunbul, “Sonlu Elemanlar Yöntemi ile Depreme Bağlı Heyelan Tehlike Modelleme”, BUJSE, c. 13, sy. 2, ss. 5–14, 2021, doi: 10.20854/bujse.829417.
ISNAD Sunbul, Fatih - Sunbul, Ayse Bengu. “Sonlu Elemanlar Yöntemi Ile Depreme Bağlı Heyelan Tehlike Modelleme”. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 13/2 (Nisan 2021), 5-14. https://doi.org/10.20854/bujse.829417.
JAMA Sunbul F, Sunbul AB. Sonlu Elemanlar Yöntemi ile Depreme Bağlı Heyelan Tehlike Modelleme. BUJSE. 2021;13:5–14.
MLA Sunbul, Fatih ve Ayse Bengu Sunbul. “Sonlu Elemanlar Yöntemi Ile Depreme Bağlı Heyelan Tehlike Modelleme”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 13, sy. 2, 2021, ss. 5-14, doi:10.20854/bujse.829417.
Vancouver Sunbul F, Sunbul AB. Sonlu Elemanlar Yöntemi ile Depreme Bağlı Heyelan Tehlike Modelleme. BUJSE. 2021;13(2):5-14.