Derleme
BibTex RIS Kaynak Göster

GİYİLEBİLİR DOKU ELEKTRONİĞİ

Yıl 2021, , 27 - 34, 22.10.2021
https://doi.org/10.20854/bujse.931291

Öz

Giyilebilir doku elektroniği; hastalıkların erken dönemde teşhisi ve teşhis edilen rahatsızlıkların tedavi süreçleri devam ederken tedavi etkinliğinin takibi hakkında hastaları ve hastaları takip eden doktorlar için güvenilir bilgiler sunabilmektedir. Hastalıkların erken dönemde teşhisinin yapılmasının yanı sıra ve hastalığın uzaktan takibinin güvenilir, hassas, pratik ve düşük maliyetli olarak yapılması temel amaçlar arasında yer almaktadır. Hastalar, giyilebilir doku elektroniği teknolojisini kullanarak günlük yaşam standartlarından ödün vermeden hastalık teşhisini ve takibini yapabilir hale gelmektedir. Bu cihazlar, mekanik hareket kısıtlamalarını ve uyumsuzluklarını azaltmak için epidermis üzerine uyumlu bir şekilde yerleştirilirken, aynı anda doğru, invazif olmayan, uzun vadeli ve sürekli izleme sağlanmaktadır. Giyilebilir doku elektroniği ürünler tarafından elde edilen veriler; kişiye, doktoruna ve cep telefonuna aktarılabilmektedir. Bu sayede anında durum hakkında bilgi sağlanması yanında önceki veriler ile bir kıyaslama yapmak da mümkün hale gelmektedir.

Kaynakça

  • AYDAN, S.; AYDAN, M., Sağlık Hizmetlerinde Bireysel Ölçüm ve Giyilebilir Teknoloji: Olası Katkıları, Güncel Durum ve Öneriler. Hacettepe Sağlık İdaresi Dergisi 2016, 19 (3).
  • Büyükgöze, S., Sağlık 4.0’da Giyilebilir Teknolojilerden Sensör Yamalar Üzerine Bir İnceleme. Avrupa Bilim ve Teknoloji Dergisi (17), 1239-1247.
  • Büyükgöze, S.; Dereli, E., Toplum 5.0 Ve Dijital Sağlık. VI. Uluslararası Bilimsel ve Mesleki Çalışmalar Kongresi-Fen ve Sağlık 2019, 07-10.
  • Chen, L.; Milligan, B.; Qu, T.; Jeevananthan, L.; Shaker, G.; Safavi-Naeini, S., Cellular Wireless Energy Harvesting for Smart Contact Lens Applications [Education Corner]. IEEE Antennas and Propagation Magazine 2018, 60 (5), 108-124.
  • Dey, A., Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B 2018, 229, 206-217.
  • DIMITROV, D. K.; NIKOLOSKI, D.; YILMAZ, R., International Balkan and Near Eastern Social Sciences Congress Series XI. IBANESS Congress Series-Tekirdağ/TURKEY. 2019.
  • Ding, L.; Wang, Y.; Sun, C.; Shu, Q.; Hu, T.; Xuan, S.; Gong, X., Three-Dimensional Structured Dual-Mode Flexible Sensors for Highly Sensitive Tactile Perception and Noncontact Sensing. ACS applied materials & interfaces 2020, 12 (18), 20955-20964.
  • EROL, A. D.; ÇETİNER, S., Giyilebilir Elektronik/Akıllı Tekstiller ve Uygulamaları. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi 2017, 20 (1), 1-20.
  • Gu, Y.; Zhang, T.; Chen, H.; Wang, F.; Pu, Y.; Gao, C.; Li, S., Mini review on flexible and wearable electronics for monitoring human health information. Nanoscale research letters 2019, 14 (1), 1-15.
  • Hao, M.; Li, L.; Wang, S.; Sun, F.; Bai, Y.; Cao, Z.; Qu, C.; Zhang, T., Stretchable, self-healing, transient macromolecular elastomeric gel for wearable electronics. Microsystems & nanoengineering 2019, 5 (1), 1-10.
  • He, W.; Wang, C.; Wang, H.; Jian, M.; Lu, W.; Liang, X.; Zhang, X.; Yang, F.; Zhang, Y., Integrated textile sensor patch for real-time and multiplex sweat analysis. Science advances 2019, 5 (11), eaax0649.
  • Hu, X.; Dou, Y.; Li, J.; Liu, Z., Wearable Electronics: Buckled Structures: Fabrication and Applications in Wearable Electronics (Small 32/2019). Small 2019, 15 (32), 1970169.
  • ISKANDEROV, J.; GÜVENSAN, M. A., Akıllı telefon ve giyilebilir cihazlarla aktivite tanıma: Klasik yaklaşımlar, yeni çözümler. Pamukkale University Journal of Engineering Sciences 2019, 25 (2).
  • Jia, W., Continuous glucose monitoring. Springer: 2018.
  • Karpova, E. V.; Shcherbacheva, E. V.; Galushin, A. A.; Vokhmyanina, D. V.; Karyakina, E. E.; Karyakin, A. A., Noninvasive diabetes monitoring through continuous analysis of sweat using flow-through glucose biosensor. Analytical chemistry 2019, 91 (6), 3778-3783.
  • Khan, Y.; Ostfeld, A. E.; Lochner, C. M.; Pierre, A.; Arias, A. C., Monitoring of vital signs with flexible and wearable medical devices. Advanced Materials 2016, 28 (22), 4373-4395.
  • Laguna, J. O.; Olaya, A. G.; Borrajo, D. In A dynamic sliding window approach for activity recognition, International Conference on User Modeling, Adaptation, and Personalization, Springer: 2011; pp 219-230.
  • Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y., A transparent bending-insensitive pressure sensor. Nature nanotechnology 2016, 11 (5), 472-478.
  • Leonhardt, S., Personal healthcare devices. In AmIware Hardware Technology Drivers of Ambient Intelligence, Springer: 2006; pp 349-370.
  • Li, H.; Wang, Z.; Cao, Y.; Chen, Y.; Feng, X., High-Efficiency Transfer Printing Using Droplet Stamps for Robust Hybrid Integration of Flexible Devices. ACS Applied Materials & Interfaces 2020.
  • Lin, T.; Gal, A.; Mayzel, Y.; Horman, K.; Bahartan, K., Non-invasive glucose monitoring: A review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci 2017, 6 (5), 001-008.
  • Liu, L.; Yang, X.; Zhao, L.; Xu, W.; Wang, J.; Yang, Q.; Tang, Q., Nanowrinkle-patterned flexible woven triboelectric nanogenerator toward self-powered wearable electronics. Nano Energy 2020, 73, 104797.
  • Liu, Y.; Pharr, M.; Salvatore, G. A., Lab-on-skin: a review of flexible and stretchable electronics for wearable health monitoring. ACS nano 2017, 11 (10), 9614-9635.
  • Main, T.; Slywotzky, A., The Patient to Consumer Revolution. Oliver Wyman. Accessed November 2014, 12.
  • Main, T.; Slywotzky, A., The Patient-to-Consumer Revolution: How High-tech, Transparent Marketplaces, and Consumer Power Are Transforming US Healthcare. Retrieved March 2014, 18, 2014.
  • Omer, A. E.; Shaker, G.; Safavi-Naeini, S.; Kokabi, H.; Alquié, G.; Deshours, F.; Shubair, R. M., Low-cost portable microwave sensor for non-invasive monitoring of blood glucose level: novel design utilizing a four-cell CSRR hexagonal configuration. Scientific Reports 2020, 10 (1), 1-20.
  • Pang, Y.; Yang, Z.; Yang, Y.; Ren, T. L., Wearable electronics based on 2D materials for human physiological information detection. Small 2020, 16 (15), 1901124.
  • Park, S.; Wang, G.; Cho, B.; Kim, Y.; Song, S.; Ji, Y.; Yoon, M.-H.; Lee, T., Flexible molecular-scale electronic devices. Nature nanotechnology 2012, 7 (7), 438-442.
  • Shetti, N. P.; Mishra, A.; Basu, S.; Mascarenhas, R. J.; Kakarla, R. R.; Aminabhavi, T. M., Skin-patchable electrodes for biosensor applications: a review. ACS Biomaterials Science & Engineering 2020, 6 (4), 1823-1835.
  • Shi, Y.; Wang, C.; Yin, Y.; Li, Y.; Xing, Y.; Song, J., Functional soft composites as thermal protecting substrates for wearable electronics. Advanced Functional Materials 2019, 29 (45), 1905470.
  • Song, Y.; Min, J.; Gao, W., Wearable and implantable electronics: moving toward precision therapy. ACS nano 2019, 13 (11), 12280-12286.
  • Teng, X.-F.; Zhang, Y.-T.; Poon, C. C.; Bonato, P., Wearable medical systems for p-health. IEEE reviews in Biomedical engineering 2008, 1, 62-74.
  • Trung, T. Q.; Lee, N. E., Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoringand personal healthcare. Advanced materials 2016, 28 (22), 4338-4372.
  • Uçar, A.; Özalp, R., Efficient android electronic nose design for recognition and perception of fruit odors using Kernel Extreme Learning Machines. Chemometrics and Intelligent Laboratory Systems 2017, 166, 69-80.
  • Vogenberg, F. R.; Santilli, J., Healthcare trends for 2018. American health & drug benefits 2018, 11 (1), 48.
  • Walse, K. H.; Dharaskar, R. V.; Thakare, V. M., A study of human activity recognition using AdaBoost classifiers on WISDM dataset. The Institute of Integrative Omics and Applied Biotechnology Journal 2016, 7 (2), 68-76.
  • Xiang, L.; Zeng, X.; Xia, F.; Jin, W.; Liu, Y.; Hu, Y., Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS nano 2020, 14 (6), 6449-6469.
  • Yan, S.; Liao, Y.; Feng, X.; Liu, Y. In Real time activity recognition on streaming sensor data for smart environments, 2016 International Conference on Progress in Informatics and Computing (PIC), IEEE: 2016; pp 51-55.
  • Yang, Y.; Yang, X.; Tan, Y.; Yuan, Q., Recent progress in flexible and wearable bio-electronics based on nanomaterials. Nano Research 2017, 10 (5), 1560-1583.
  • Yuan, H.; Wang, G.; Zhao, Y.; Liu, Y.; Wu, Y.; Zhang, Y., A stretchable, asymmetric, coaxial fiber-shaped supercapacitor for wearable electronics. Nano Research 2020, 13, 1686-1692.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ceren Türkcan 0000-0002-3354-5707

Yayımlanma Tarihi 22 Ekim 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Türkcan, C. (2021). GİYİLEBİLİR DOKU ELEKTRONİĞİ. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 14(1), 27-34. https://doi.org/10.20854/bujse.931291
AMA Türkcan C. GİYİLEBİLİR DOKU ELEKTRONİĞİ. BUJSE. Ekim 2021;14(1):27-34. doi:10.20854/bujse.931291
Chicago Türkcan, Ceren. “GİYİLEBİLİR DOKU ELEKTRONİĞİ”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 14, sy. 1 (Ekim 2021): 27-34. https://doi.org/10.20854/bujse.931291.
EndNote Türkcan C (01 Ekim 2021) GİYİLEBİLİR DOKU ELEKTRONİĞİ. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 14 1 27–34.
IEEE C. Türkcan, “GİYİLEBİLİR DOKU ELEKTRONİĞİ”, BUJSE, c. 14, sy. 1, ss. 27–34, 2021, doi: 10.20854/bujse.931291.
ISNAD Türkcan, Ceren. “GİYİLEBİLİR DOKU ELEKTRONİĞİ”. Beykent Üniversitesi Fen ve Mühendislik Bilimleri Dergisi 14/1 (Ekim 2021), 27-34. https://doi.org/10.20854/bujse.931291.
JAMA Türkcan C. GİYİLEBİLİR DOKU ELEKTRONİĞİ. BUJSE. 2021;14:27–34.
MLA Türkcan, Ceren. “GİYİLEBİLİR DOKU ELEKTRONİĞİ”. Beykent Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, c. 14, sy. 1, 2021, ss. 27-34, doi:10.20854/bujse.931291.
Vancouver Türkcan C. GİYİLEBİLİR DOKU ELEKTRONİĞİ. BUJSE. 2021;14(1):27-34.