Araştırma Makalesi
BibTex RIS Kaynak Göster

Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi

Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

In this paper, within the context of a study on the effects of the parameters
which are important for damage tolerance, upon damage tolerance life, cycle counting
techniques are assessed while looking for an optimum solution to design of systems on the
basis of damage tolerance, through analysing the effects of load cycle counting technique
on fatigue crack growth life estimations.

Kaynakça

  • [1] J. Ad´amek, H. Herrlich, J. Rosicky and W. Tholen, Weak factorization systems and topological functors, Applied Categorical Structures 10 (2002), 237–249.
  • [2] J. Adam´ek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990. http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
  • [3] M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures 10 (2002), 403–415.
  • [4] H. L. Bentley and H. Herrlich, Merotopological spaces, Applied Categorical Structures 12 (2004), 155–180.
  • [5] H. L. Bentley and E. Lowen-Colebunders, Initial morphisms versus embeddings, Applied Categorical Structures 12 (2004), 361–367.
  • [6] L. M. Brown, R. Ert¨urk and S¸. Dost, Ditopological texture spaces and fuzzy topology, II. Topological considerations, Fuzzy Sets and Systems 147 (2004), 201–231.
  • [7] G. Castellini, Categorical Closure Operators, Birkh¨auser, Boston 2003.
  • [8] G. Castellini, Connectedness with respect to a closure operator, Applied Categorical Structures 9 (2001), 285–302.
  • [9] M. M. Clementino, On categorical notions of compact objects, Applied Categorical Structures 4 (1996), 15–29.
  • [10] M. M. Clementino and D. Hofmann, Topological features of lax algebras, Applied Categorical Structures 11 (2003), 267–286.
  • [11] M. M. Clementino and W. Tholen, Tychonoff’s theorem in a category, Proceedings of the American Mathematical Society 124 (1996), 3311–3314.
  • [12] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, Netherlands 1995.
  • [13] D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Mathematicae 11 (1988), 323–337.
  • [14] T. H. Fay, Weakly hereditary initial closure operators, Applied Categorical Structures 8 (2000), 415–431.
  • [15] T. H. Fay and S. V. Joubert, Isolated submodules and skew fields, Applied Categorical Structures 8 (2000), 317–326.
  • [16] J. Fillmore, D. Pumpl¨un and H. R¨ohrl, On N-summations, I, Applied Categorical Structures 10 (2002), 291–315.
  • [17] W. G¨ahler, A. S. Abd-Allah and A. Kandil, On extended fuzzy topologies, Fuzzy Sets and Systems 109 (2000), 149–172.
  • [18] E. Giuli and W. Tholen, Openness with respect to a closure operator, Applied Categorical Structures 8 (2000), 487–502.
  • [19] S. N. Hosseini and S. Sh. Mousavi, A relation between closure operators on a small category and its category of presheaves, Applied Categorical Structures 14 (2006), 99–110.
  • [20] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, A First Introduction to Topos Theory, Springer-Verlag New York Inc. 1992.
  • [21] M. V. Mielke, Final lift actions associated with topological functors, Applied Categorical Structures 10 (2002), 495–504.
Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

Kaynakça

  • [1] J. Ad´amek, H. Herrlich, J. Rosicky and W. Tholen, Weak factorization systems and topological functors, Applied Categorical Structures 10 (2002), 237–249.
  • [2] J. Adam´ek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, John Wiley and Sons, 1990. http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
  • [3] M. Baran, Compactness, perfectness, separation, minimality and closedness with respect to closure operators, Applied Categorical Structures 10 (2002), 403–415.
  • [4] H. L. Bentley and H. Herrlich, Merotopological spaces, Applied Categorical Structures 12 (2004), 155–180.
  • [5] H. L. Bentley and E. Lowen-Colebunders, Initial morphisms versus embeddings, Applied Categorical Structures 12 (2004), 361–367.
  • [6] L. M. Brown, R. Ert¨urk and S¸. Dost, Ditopological texture spaces and fuzzy topology, II. Topological considerations, Fuzzy Sets and Systems 147 (2004), 201–231.
  • [7] G. Castellini, Categorical Closure Operators, Birkh¨auser, Boston 2003.
  • [8] G. Castellini, Connectedness with respect to a closure operator, Applied Categorical Structures 9 (2001), 285–302.
  • [9] M. M. Clementino, On categorical notions of compact objects, Applied Categorical Structures 4 (1996), 15–29.
  • [10] M. M. Clementino and D. Hofmann, Topological features of lax algebras, Applied Categorical Structures 11 (2003), 267–286.
  • [11] M. M. Clementino and W. Tholen, Tychonoff’s theorem in a category, Proceedings of the American Mathematical Society 124 (1996), 3311–3314.
  • [12] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators, Kluwer Academic Publishers, Netherlands 1995.
  • [13] D. Dikranjan, E. Giuli and A. Tozzi, Topological categories and closure operators, Quaestiones Mathematicae 11 (1988), 323–337.
  • [14] T. H. Fay, Weakly hereditary initial closure operators, Applied Categorical Structures 8 (2000), 415–431.
  • [15] T. H. Fay and S. V. Joubert, Isolated submodules and skew fields, Applied Categorical Structures 8 (2000), 317–326.
  • [16] J. Fillmore, D. Pumpl¨un and H. R¨ohrl, On N-summations, I, Applied Categorical Structures 10 (2002), 291–315.
  • [17] W. G¨ahler, A. S. Abd-Allah and A. Kandil, On extended fuzzy topologies, Fuzzy Sets and Systems 109 (2000), 149–172.
  • [18] E. Giuli and W. Tholen, Openness with respect to a closure operator, Applied Categorical Structures 8 (2000), 487–502.
  • [19] S. N. Hosseini and S. Sh. Mousavi, A relation between closure operators on a small category and its category of presheaves, Applied Categorical Structures 14 (2006), 99–110.
  • [20] S. Mac Lane and I. Moerdijk, Sheaves in Geometry and Logic, A First Introduction to Topos Theory, Springer-Verlag New York Inc. 1992.
  • [21] M. V. Mielke, Final lift actions associated with topological functors, Applied Categorical Structures 10 (2002), 495–504.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Turgut Akyürek

Yayımlanma Tarihi 1 Mayıs 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 10 Sayı: 1

Kaynak Göster

APA Akyürek, T. (2013). Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi. Cankaya University Journal of Science and Engineering, 10(1).
AMA Akyürek T. Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi. CUJSE. Mayıs 2013;10(1).
Chicago Akyürek, Turgut. “Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi”. Cankaya University Journal of Science and Engineering 10, sy. 1 (Mayıs 2013).
EndNote Akyürek T (01 Mayıs 2013) Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi. Cankaya University Journal of Science and Engineering 10 1
IEEE T. Akyürek, “Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi”, CUJSE, c. 10, sy. 1, 2013.
ISNAD Akyürek, Turgut. “Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi”. Cankaya University Journal of Science and Engineering 10/1 (Mayıs 2013).
JAMA Akyürek T. Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi. CUJSE. 2013;10.
MLA Akyürek, Turgut. “Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi”. Cankaya University Journal of Science and Engineering, c. 10, sy. 1, 2013.
Vancouver Akyürek T. Hasar Toleransında Parametrik Analiz-Devir Sayma Tekniğinin Etkisi. CUJSE. 2013;10(1).