Araştırma Makalesi
BibTex RIS Kaynak Göster

New Representation of Quaternions Lie Group and SU(2)

Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

In this paper the concept of outer product for R
4
is considered. By using this
outer product a new product on R
5
is introduced. R
5 with this product and usual addition
and scalar multiplication is an associative algebra. Via this algebra a new representation
for quaternions as a Lie group is presented. Moreover a representation for SU(2) is
deduced. 

Kaynakça

  • [1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Addison-Wesley, 1983.
  • [2] A. Baker, Matrix Groups an Introduction to Lie Group Theory, Springer-Verlag, 2002.
  • [3] W. Fulton and J. Harris, Representation Theory. A First Course, Springer-Verlag, 1991.
  • [4] P. R. Girard, Quaternion, Clifford Algebras and Relativistic Physics, Birkhauser, 2007.
  • [5] B. C. Hall, Lie Groups Lie Algebras, and Representation, Springer-Verlag, 2004.
  • [6] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, 1999.
  • [7] D. Miliˇci´c, Lectures on Lie Groups, http://www.math.utah.edu/~milicic/Eprints/ lie.pdf, 2004.
  • [8] M. R. Molaei and M.R. Farhangdost, Lie algebras of a class of top spaces, Balkan Journal of Geometry and Its Applications 14 (2009), 46–51.
  • [9] O. Raifeartaigh, Group Structure of Gauge Theories, Cambridge University Press, 1986.
  • [10] R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge University Press, 1984.
Yıl 2013, Cilt: 10 Sayı: 1, - , 01.05.2013

Öz

Kaynakça

  • [1] R. Abraham, J. E. Marsden and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Addison-Wesley, 1983.
  • [2] A. Baker, Matrix Groups an Introduction to Lie Group Theory, Springer-Verlag, 2002.
  • [3] W. Fulton and J. Harris, Representation Theory. A First Course, Springer-Verlag, 1991.
  • [4] P. R. Girard, Quaternion, Clifford Algebras and Relativistic Physics, Birkhauser, 2007.
  • [5] B. C. Hall, Lie Groups Lie Algebras, and Representation, Springer-Verlag, 2004.
  • [6] J. E. Marsden and T. S. Ratiu, Introduction to Mechanics and Symmetry, Springer-Verlag, 1999.
  • [7] D. Miliˇci´c, Lectures on Lie Groups, http://www.math.utah.edu/~milicic/Eprints/ lie.pdf, 2004.
  • [8] M. R. Molaei and M.R. Farhangdost, Lie algebras of a class of top spaces, Balkan Journal of Geometry and Its Applications 14 (2009), 46–51.
  • [9] O. Raifeartaigh, Group Structure of Gauge Theories, Cambridge University Press, 1986.
  • [10] R. Penrose and W. Rindler, Spinors and Space-Time, Cambridge University Press, 1984.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Delbaznasab Bu kişi benim

Mohammad Reza Molaei

Yayımlanma Tarihi 1 Mayıs 2013
Yayımlandığı Sayı Yıl 2013 Cilt: 10 Sayı: 1

Kaynak Göster

APA Delbaznasab, A., & Molaei, M. R. (2013). New Representation of Quaternions Lie Group and SU(2). Cankaya University Journal of Science and Engineering, 10(1).
AMA Delbaznasab A, Molaei MR. New Representation of Quaternions Lie Group and SU(2). CUJSE. Mayıs 2013;10(1).
Chicago Delbaznasab, Ali, ve Mohammad Reza Molaei. “New Representation of Quaternions Lie Group and SU(2)”. Cankaya University Journal of Science and Engineering 10, sy. 1 (Mayıs 2013).
EndNote Delbaznasab A, Molaei MR (01 Mayıs 2013) New Representation of Quaternions Lie Group and SU(2). Cankaya University Journal of Science and Engineering 10 1
IEEE A. Delbaznasab ve M. R. Molaei, “New Representation of Quaternions Lie Group and SU(2)”, CUJSE, c. 10, sy. 1, 2013.
ISNAD Delbaznasab, Ali - Molaei, Mohammad Reza. “New Representation of Quaternions Lie Group and SU(2)”. Cankaya University Journal of Science and Engineering 10/1 (Mayıs 2013).
JAMA Delbaznasab A, Molaei MR. New Representation of Quaternions Lie Group and SU(2). CUJSE. 2013;10.
MLA Delbaznasab, Ali ve Mohammad Reza Molaei. “New Representation of Quaternions Lie Group and SU(2)”. Cankaya University Journal of Science and Engineering, c. 10, sy. 1, 2013.
Vancouver Delbaznasab A, Molaei MR. New Representation of Quaternions Lie Group and SU(2). CUJSE. 2013;10(1).