Araştırma Makalesi
BibTex RIS Kaynak Göster

THE EFFECTS OF GLUCOCORTICOIDS ON THE DISTRIBUTION OF FIBRONECTIN, CADHERIN AND BETA-CATENIN MOLECULES DURING MOUSE LUNG DEVELOPMENT

Yıl 2009, Cilt: 5 Sayı: 1, 27 - 38, 01.03.2009

Öz

Mammalian lung development involves complex relationships between cells and extracellular matrices. This process mediated by a series of matrix components and adhesion molecules such as fibronectin, laminin, cadherin, catenin and collagen. Glucocorticoids play a central role in fetal lung development. For example it is known that, glucocorticoid administration during pregnancy alters the maturation of the lung. In the present study, we used an immunohistochemical method to evaluate the possible effect of exogenous glucocorticoids to developmental profile of fibronectin, cadherin and betacatenin molecules. Dexamethasone was administrated to pregnant mice on days 11, 12, 13 and 14 of gestation. Animals were sacrificed on days 12, 13, 14 and 15, and stained with polyclonal antibodies to fibronectin, pan-cadherin and beta-catenin. Our results indicated that staining reactivities of fibronectin, pancadherin and beta-catenin were similar in distal epithelia, conductive airways, basal membranes, luminal surfaces of airways and mesenchymal cells. Therefore, we suggest that, 24 hourly antenatal dexamethasone treatments couldn’t completely affect fibronectin, cadherin and beta-catenin contents in evaluated periods of developing lung.

Kaynakça

  • Morriss-Kay, G.M., and Sokolova, N., “Embryonic development and pattern formation”, FASEB Journal, 10: 961-968 (1996).
  • Adamson, E.D., “Growth factors and their receptors
  • Genetics, 14: 159-164 (1993).
  • Developmental Matrisian, L.M., and Hogan, B. L., “Growth factor-regulated proteases and extracellular matrix remodeling during mammalian development”, Current Topics in Developmental Biology, 24: 219-259 (1990).
  • Hynes, R.O., “Integrins: bidirectional, allosteric signaling machines”, Cell 110: 673-687 (2002).
  • Hogan, B.M.L., “Morphogenesis”, Cell 96(2): 225-233 (1999).
  • Boucaut, J.C., and Darribere, T., “Fibronectin in
  • mesodermal cells contact fibronectin established prior to gastrulation” Cell and Tissue Research 234: 135-145 (1983). embryos.
  • Migrating Takeichi, M., “Cadherin cell adhesion receptors as a morphogenetic regulator”, Science 251: 1451-1455 (1991).
  • Takeichi, M., “Morphogenetic roles of classic cadherins”, Current Opinion in Cell Biology 7: 619-627 (1995).
  • Halbleib, J.M., and Nelson, W.J.,” Cadherins in development: cell adhesion, sorting, and tissue morphogenesis”, Genes & Development 20: 3199- 3214 (2006).
  • McCrea, P.D., Turck, C.W., and Gumbiner, B., “A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E- cadherin”, Science 254: 1359-1361 (1991).
  • Nagafuchi ,A., and Takeichi, M., “Cell binding function of E-cadherin is regulated by the cytoplasmic domain” EMBO Journal 7: 3679-3684 (1988).
  • Ozawa, M., Baribault, H., and Kemler, R., “The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species” EMBO Journal 8: 1711-1717 (1989).
  • Potter, E., Bergwitz, C., and Brabant, G., “The cadherin-catenin system: implications for growth and differentiation of endocrine tissues” Endocrine Reviews 20: 207-239 (1999).
  • Fauci, A.S., Dale, D.C., and Balow, J.E., “Glucocorticosteroid therapy: mechanisms of action and clinical considerations”, Annals of Internal Medicine 84: 304-315 (1976).
  • Munck, A., Guyre, P.M., and Holbrook, N.J., “Physiological functions of glucocorticoids in stress and their relation to pharmacological actions”, Endocrine Reviews 5: 25-44 (1984).
  • Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function. Annu Rev Immunol. 2000;18: 309-45.
  • Zhang, Z., Tarone, G., and Turner, D.C., “Expression of integrin alpha 1 beta 1 is regulated by nerve growth factor and dexamethasone in PC12 cells. Functional consequences for adhesion and neurite outgrowth”, The Journal of Biological Chemistry 268: 5557-5565 (1993).
  • Gross, I., “Regulation of fetal lung maturation”, The American Journal of Physiology 259(6 Pt 1): L337-344 (1990).
  • Slotkin, T.A., Barnes, G.A., McCook, E.C., and Seidler, F.J., “Programming of brainstem serotonin transporter development by prenatal glucocorticoids”, Brain Research Developmental Brain Research 93: 155-161 (1996).
  • Slotkin, T.A., Zhang, J., McCook, E.C., and Seidler, F.J., “Glucocorticoid administration alters nuclear transcription factors in fetal rat brain: implications for the use of antenatal steroids”, Brain Research Developmental Brain Research 111: 11-24 (1998).
  • Tesoriere, G., Vento, R., Taibi, G., Calvaruso, G., and Schiavo, M.R., “Biochemical aspects of chick embryo retina development: the effects of glucocorticoids” Journal of Neurochemistry 52: 1487-1494 (1989).
  • Bian, X., Briggs., M.M., Schachat, F.H., Seidler, F.J., and Slotkin, T.A., “Glucocorticoids accelerate the ontogenetic transition of cardiac ventricular myosin heavy-chain isoform expression in the rat: promotion by prenatal exposure to a low dose of dexamethasone” Journal of Developmental Physiology 18: 35-42 (1992).
  • Bellabarba, D., Beaudry, C., and Lehoux, J.G., “Corticosteroid receptors in the kidney of chick embryo. II. Ontogeny of corticosterone receptor and
  • Comparative Endocrinology 50: 305-312 (1983). General
  • and Vacchio, M.S., King, L.B., and Ashwell, J.D., “Regulation of thymocyte development by glucocorticoids” Behring Institute Mitteilungen 97: 24-31 (1996).
  • McGowan, S.E., “Extracellular matrix and the regulation of lung development and repair” FASEB Journal 6: 2895-2904 (1992).
  • Minoo, P., and King, R.J., “Epithelial- mesenchymal interactions in lung development”, Annual Review of Physiology 56: 13-45 (1994).
  • Shannon, J.M., McCormick-Shannon, K., Burhans, M.S., Shangguan, X., Srivastava, K., and Hyatt, B.A., “Chondroitin sulfate proteoglycans are required for lung growth and morphogenesis in vitro”, American Journal of Physiology. Lung Cellular and Molecular Physiology 285: L1323- L1336 (2003).
  • Gross, I., Dynia, D.W., Rooney, S.A., Smart, D.A., Warshaw, J.B., Sissom, J.F., and Hoath, S.B., “Influence of epidermal growth factor on fetal rat lung development in vitro”, Pediatric Research 20: 473-477 (1986).
  • Sannes, P.L., Burch, K.K., Khosla, J., McCarthy,
  • “Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs”, American Journal of Respiratory Cell and Molecular Biology 8: 245-251 (1993).
  • Schuger, L., O'Shea, S., Rheinheimer, J., and Varani, J., “Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis”. Developmental Biology 137: 26- 32 (1990).
  • Mosher, D.F., “Physiology of fibronectin”, Annual Review of Medicine 35: 561-575 (1984).
  • Dufour, S., Duband, J.L., and Thiery, J.P., “Role of a major cell-substratum adhesion system in cell behavior and morphogenesis” Biologie Cellulaire 58: 1-13 (1986).
  • Glukhova, M.A., and Thiery, J.P., “Fibronectin and integrins in development”, Seminars in Cancer Biology 4: 241-249 (1993).
  • Derin, B.G., Erdogan, D., Take, G., and Lortlar, N., “Immunohistochemical localization of extracellular matrix proteins in developing lung tissues” Saudii Medical Journal 28: 334-338 (2007).
  • Snyder, J.M., O'Brien, J.A., and Rodgers, H.F.,”Localization and accumulation of fibronectin in rabbit fetal lung tissue” Differentiation 34: 32- 39 (1987).
  • Rosenkrans, W.A. Jr., Albright, J.T., Hausman, R.E., and Penney, D.P., “Ultrastructural immunocytochemical localization of fibronectin in the developing rat lung” Cell Tissue Research 234: 165-177 (1983).
  • Rosenkrans, W.A. Jr., Albright, J.T., Hausman, R.E., and Penney, D.P., “Light- microscopic immunocytochemical localization of fibronectin in the developing rat lung” Cell Tissue Research 233: 113-123 (1983).
  • Roman, J., “Fibronectin and fibronectin receptors in lung development” Experimental Lung Research, 23: 147-159 (1997).
  • Sakai, T., Larsen, M., and Yamada, K.M., “Fibronectin
  • morphogenesis”, Nature, 42: 876-881 (2003). in
  • branching [40] Takeichi, M., “The cadherins: cell-cell adhesion
  • morphogenesis”, Development, 102: 639-655 (1988). controlling
  • animal [41] Hirai, Y., Nose, A., Kobayashi, S., and Takeichi, M., “Expression and role of E- and P- cadherin adhesion molecules in embryonic histogenesis. I. Lung epithelial morphogenesis”, Development, 105: 263-270 (1989).
  • Gooding, J.M., Yap, K.L., and Ikura, M., “The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three- dimensional structures”, Bioessays, 26: 497-511 (2004).
  • Nelson, W.J., and Nusse, R., “Convergence of Wnt, beta-catenin, and cadherin pathways”, Science, 303: 1483-1487 (2004).
  • Mucenski, M.L., Wert, S.E., Nation, J.M., Loudy, D.E., Huelsken, J., Birchmeier, W., Morrisey, E.E., and Whitsett, J.A., “beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis” Journal of Biological Chemistry, 278: 40231-40238 (2003).
  • Pongracz, J.E., and Stockley, R.A., “Wnt signalling in lung development and diseases”, Respiratory Research, 7: 15 (2006).
  • Logan, C.Y., and Nusse, R., “The Wnt signaling pathway in development and disease”, Annual Review of Cell and Developmental Biology, 20: 781-810 (2004).
  • Tebar, M., Destree, O., de Vree, W.J., Ten Have-Opbroek, A.A..”Expression of Tcf/Lef and sFrp and localization of beta-catenin in the developing mouse lung”, Mechanisms of Development, 109: 437-440 (2001).
  • Akiyama, T., “Wnt/beta-catenin signaling”, Cytokine and Growth Factor Reviews. 11: 273-282 (2000).
  • Okubo, T., and Hogan, B.L., “Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm”, Journal of Biology, 3: 11 (2004).
  • Mucenski, M.L., Nation, J.M., Thitoff, A.R., Besnard, V., Xu, Y., Wert, S.E., Harada, N., Taketo, M.M., Stahlman, M.T., and Whitsett, J.A., “Beta-catenin
  • respiratory epithelial cells in vivo” American Journal of Physiology. Lung Cellular and Molecular Physiology, 289: L971-L979 (2005).
  • of Mendelson, C.R., Acarregui, M.J., Odom, M.J., and Boggaram, V., “Developmental and hormonal regulation of surfactant protein A (SP- A) gene expression in fetal lung”, Journal of Developmental Physiology,15: 61-69 (1991).
  • Ward, R.M., “Pharmacologic enhancement of fetal lung maturation”, Clinics in Perinatology,21: 523-542 (1994). [53] Ballard,
  • “Glucocorticoid receptors and the role of glucocorticoids in fetal lung development”, Proceedings of the National Academy of Sciences of the United States of America,69: 2668-2672 (1972).
  • Arai, H., Kikuchi, W., Ishida, A., and Takada, G., “Dexamethasone-induced prenatal alveolar wall thinning is associated with a decrease in EIIIA+ fibronectin isoform in the fetal rat lung”, Biology of the Neonate, 87: 113-120 (2005).
  • Brenner, R.E., Felger, D., Winter, C., Christiansen, A., Hofmann, D., and Bartmann, P., “Effects of dexamethasone on proliferation, chemotaxis,
  • metabolism of human fetal lung fibroblasts”, Pediatric Pulmonology,32: 1-7 (2001).
  • fibronectin- [56] Cole, T.J., Solomon, N.M., Van Driel, R., Monk, J.A., Bird, D., Richardson, S.J., Dilley, R.J., and Hooper, S.B., “Altered epithelial cell proportions in the fetal lung of glucocorticoid receptor null mice”, American Journal of Respiratory Cell and Molecular Biology,30: 613- 619 (2004).
  • Snyder, J.M., Rodgers, H.F., O'Brien, J.A.,
  • Mahli, N., Magliato, S.A., and Durham, P.L.,
  • “Glucocorticoid effects on rabbit fetal lung
  • maturation in vivo: an ultrastructural
  • morphometric study”, The Anatomical Record, 232: 133-140 (1992).
  • Geliş Tarihi: 20/01/2009 Kabul Tarihi: 09/04/2009

FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ

Yıl 2009, Cilt: 5 Sayı: 1, 27 - 38, 01.03.2009

Öz

Memeli akciger gelisimi hücreler ile ekstrasellüler matriksler arasında gerçeklesen kompleks etkilesimleri içerir. Bu süreç, fibronektin, laminin, kaderin, katenin ve kollajen gibi bir dizi matriks bileseni ve adezyon molekülü tarafından düzenlenmektedir. Glukokortikoidler fötal akciger gelisiminde merkezi bir role sahiptir. Örnegin, gebelik sırasında glukokortikoid uygulamasının akciger gelisiminde degisiklige neden oldugu bilinmektedir. Bu çalısmada, eksojen glukokortikoidlerin fibronektin, kaderin ve beta-katenin moleküllerinin gelisimsel profili üzerine etkilerini belirlemek için immunohistokimyasal bir yöntem uygulandı. Deksametazon gebeligin 11., 12., 13. ve 14. günlerinde hamile farelere verildi. Hayvanlar 12., 13., 14. ve 15. günlerde kesildi ve fibronektin, pan-kaderin ve beta-katenin poliklonal antikorları ile boyandı. Bulgularımız, distal epitelyum, iletici hava kanalları, bazal membranlar, kanalların lümene bakan yüzeyleri ve mezensim hücrelerinde fibronektin, pan-kaderin ve beta-katenin reaktivitelerinin benzer oldugunu gösterdi. Bu sonuçlar, 24 saatlik dogum öncesi deksametazon uygulamalarının incelenen devrelerde gelisen akciger dokularında fibronektin, kaderin ve beta-katenin içerikleri üzerine tam bir etkisinin olmadıgını düsündürmüstür.

Kaynakça

  • Morriss-Kay, G.M., and Sokolova, N., “Embryonic development and pattern formation”, FASEB Journal, 10: 961-968 (1996).
  • Adamson, E.D., “Growth factors and their receptors
  • Genetics, 14: 159-164 (1993).
  • Developmental Matrisian, L.M., and Hogan, B. L., “Growth factor-regulated proteases and extracellular matrix remodeling during mammalian development”, Current Topics in Developmental Biology, 24: 219-259 (1990).
  • Hynes, R.O., “Integrins: bidirectional, allosteric signaling machines”, Cell 110: 673-687 (2002).
  • Hogan, B.M.L., “Morphogenesis”, Cell 96(2): 225-233 (1999).
  • Boucaut, J.C., and Darribere, T., “Fibronectin in
  • mesodermal cells contact fibronectin established prior to gastrulation” Cell and Tissue Research 234: 135-145 (1983). embryos.
  • Migrating Takeichi, M., “Cadherin cell adhesion receptors as a morphogenetic regulator”, Science 251: 1451-1455 (1991).
  • Takeichi, M., “Morphogenetic roles of classic cadherins”, Current Opinion in Cell Biology 7: 619-627 (1995).
  • Halbleib, J.M., and Nelson, W.J.,” Cadherins in development: cell adhesion, sorting, and tissue morphogenesis”, Genes & Development 20: 3199- 3214 (2006).
  • McCrea, P.D., Turck, C.W., and Gumbiner, B., “A homolog of the armadillo protein in Drosophila (plakoglobin) associated with E- cadherin”, Science 254: 1359-1361 (1991).
  • Nagafuchi ,A., and Takeichi, M., “Cell binding function of E-cadherin is regulated by the cytoplasmic domain” EMBO Journal 7: 3679-3684 (1988).
  • Ozawa, M., Baribault, H., and Kemler, R., “The cytoplasmic domain of the cell adhesion molecule uvomorulin associates with three independent proteins structurally related in different species” EMBO Journal 8: 1711-1717 (1989).
  • Potter, E., Bergwitz, C., and Brabant, G., “The cadherin-catenin system: implications for growth and differentiation of endocrine tissues” Endocrine Reviews 20: 207-239 (1999).
  • Fauci, A.S., Dale, D.C., and Balow, J.E., “Glucocorticosteroid therapy: mechanisms of action and clinical considerations”, Annals of Internal Medicine 84: 304-315 (1976).
  • Munck, A., Guyre, P.M., and Holbrook, N.J., “Physiological functions of glucocorticoids in stress and their relation to pharmacological actions”, Endocrine Reviews 5: 25-44 (1984).
  • Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function. Annu Rev Immunol. 2000;18: 309-45.
  • Zhang, Z., Tarone, G., and Turner, D.C., “Expression of integrin alpha 1 beta 1 is regulated by nerve growth factor and dexamethasone in PC12 cells. Functional consequences for adhesion and neurite outgrowth”, The Journal of Biological Chemistry 268: 5557-5565 (1993).
  • Gross, I., “Regulation of fetal lung maturation”, The American Journal of Physiology 259(6 Pt 1): L337-344 (1990).
  • Slotkin, T.A., Barnes, G.A., McCook, E.C., and Seidler, F.J., “Programming of brainstem serotonin transporter development by prenatal glucocorticoids”, Brain Research Developmental Brain Research 93: 155-161 (1996).
  • Slotkin, T.A., Zhang, J., McCook, E.C., and Seidler, F.J., “Glucocorticoid administration alters nuclear transcription factors in fetal rat brain: implications for the use of antenatal steroids”, Brain Research Developmental Brain Research 111: 11-24 (1998).
  • Tesoriere, G., Vento, R., Taibi, G., Calvaruso, G., and Schiavo, M.R., “Biochemical aspects of chick embryo retina development: the effects of glucocorticoids” Journal of Neurochemistry 52: 1487-1494 (1989).
  • Bian, X., Briggs., M.M., Schachat, F.H., Seidler, F.J., and Slotkin, T.A., “Glucocorticoids accelerate the ontogenetic transition of cardiac ventricular myosin heavy-chain isoform expression in the rat: promotion by prenatal exposure to a low dose of dexamethasone” Journal of Developmental Physiology 18: 35-42 (1992).
  • Bellabarba, D., Beaudry, C., and Lehoux, J.G., “Corticosteroid receptors in the kidney of chick embryo. II. Ontogeny of corticosterone receptor and
  • Comparative Endocrinology 50: 305-312 (1983). General
  • and Vacchio, M.S., King, L.B., and Ashwell, J.D., “Regulation of thymocyte development by glucocorticoids” Behring Institute Mitteilungen 97: 24-31 (1996).
  • McGowan, S.E., “Extracellular matrix and the regulation of lung development and repair” FASEB Journal 6: 2895-2904 (1992).
  • Minoo, P., and King, R.J., “Epithelial- mesenchymal interactions in lung development”, Annual Review of Physiology 56: 13-45 (1994).
  • Shannon, J.M., McCormick-Shannon, K., Burhans, M.S., Shangguan, X., Srivastava, K., and Hyatt, B.A., “Chondroitin sulfate proteoglycans are required for lung growth and morphogenesis in vitro”, American Journal of Physiology. Lung Cellular and Molecular Physiology 285: L1323- L1336 (2003).
  • Gross, I., Dynia, D.W., Rooney, S.A., Smart, D.A., Warshaw, J.B., Sissom, J.F., and Hoath, S.B., “Influence of epidermal growth factor on fetal rat lung development in vitro”, Pediatric Research 20: 473-477 (1986).
  • Sannes, P.L., Burch, K.K., Khosla, J., McCarthy,
  • “Immunohistochemical localization of chondroitin sulfate, chondroitin sulfate proteoglycan, heparan sulfate proteoglycan, entactin, and laminin in basement membranes of postnatal developing and adult rat lungs”, American Journal of Respiratory Cell and Molecular Biology 8: 245-251 (1993).
  • Schuger, L., O'Shea, S., Rheinheimer, J., and Varani, J., “Laminin in lung development: effects of anti-laminin antibody in murine lung morphogenesis”. Developmental Biology 137: 26- 32 (1990).
  • Mosher, D.F., “Physiology of fibronectin”, Annual Review of Medicine 35: 561-575 (1984).
  • Dufour, S., Duband, J.L., and Thiery, J.P., “Role of a major cell-substratum adhesion system in cell behavior and morphogenesis” Biologie Cellulaire 58: 1-13 (1986).
  • Glukhova, M.A., and Thiery, J.P., “Fibronectin and integrins in development”, Seminars in Cancer Biology 4: 241-249 (1993).
  • Derin, B.G., Erdogan, D., Take, G., and Lortlar, N., “Immunohistochemical localization of extracellular matrix proteins in developing lung tissues” Saudii Medical Journal 28: 334-338 (2007).
  • Snyder, J.M., O'Brien, J.A., and Rodgers, H.F.,”Localization and accumulation of fibronectin in rabbit fetal lung tissue” Differentiation 34: 32- 39 (1987).
  • Rosenkrans, W.A. Jr., Albright, J.T., Hausman, R.E., and Penney, D.P., “Ultrastructural immunocytochemical localization of fibronectin in the developing rat lung” Cell Tissue Research 234: 165-177 (1983).
  • Rosenkrans, W.A. Jr., Albright, J.T., Hausman, R.E., and Penney, D.P., “Light- microscopic immunocytochemical localization of fibronectin in the developing rat lung” Cell Tissue Research 233: 113-123 (1983).
  • Roman, J., “Fibronectin and fibronectin receptors in lung development” Experimental Lung Research, 23: 147-159 (1997).
  • Sakai, T., Larsen, M., and Yamada, K.M., “Fibronectin
  • morphogenesis”, Nature, 42: 876-881 (2003). in
  • branching [40] Takeichi, M., “The cadherins: cell-cell adhesion
  • morphogenesis”, Development, 102: 639-655 (1988). controlling
  • animal [41] Hirai, Y., Nose, A., Kobayashi, S., and Takeichi, M., “Expression and role of E- and P- cadherin adhesion molecules in embryonic histogenesis. I. Lung epithelial morphogenesis”, Development, 105: 263-270 (1989).
  • Gooding, J.M., Yap, K.L., and Ikura, M., “The cadherin-catenin complex as a focal point of cell adhesion and signalling: new insights from three- dimensional structures”, Bioessays, 26: 497-511 (2004).
  • Nelson, W.J., and Nusse, R., “Convergence of Wnt, beta-catenin, and cadherin pathways”, Science, 303: 1483-1487 (2004).
  • Mucenski, M.L., Wert, S.E., Nation, J.M., Loudy, D.E., Huelsken, J., Birchmeier, W., Morrisey, E.E., and Whitsett, J.A., “beta-Catenin is required for specification of proximal/distal cell fate during lung morphogenesis” Journal of Biological Chemistry, 278: 40231-40238 (2003).
  • Pongracz, J.E., and Stockley, R.A., “Wnt signalling in lung development and diseases”, Respiratory Research, 7: 15 (2006).
  • Logan, C.Y., and Nusse, R., “The Wnt signaling pathway in development and disease”, Annual Review of Cell and Developmental Biology, 20: 781-810 (2004).
  • Tebar, M., Destree, O., de Vree, W.J., Ten Have-Opbroek, A.A..”Expression of Tcf/Lef and sFrp and localization of beta-catenin in the developing mouse lung”, Mechanisms of Development, 109: 437-440 (2001).
  • Akiyama, T., “Wnt/beta-catenin signaling”, Cytokine and Growth Factor Reviews. 11: 273-282 (2000).
  • Okubo, T., and Hogan, B.L., “Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm”, Journal of Biology, 3: 11 (2004).
  • Mucenski, M.L., Nation, J.M., Thitoff, A.R., Besnard, V., Xu, Y., Wert, S.E., Harada, N., Taketo, M.M., Stahlman, M.T., and Whitsett, J.A., “Beta-catenin
  • respiratory epithelial cells in vivo” American Journal of Physiology. Lung Cellular and Molecular Physiology, 289: L971-L979 (2005).
  • of Mendelson, C.R., Acarregui, M.J., Odom, M.J., and Boggaram, V., “Developmental and hormonal regulation of surfactant protein A (SP- A) gene expression in fetal lung”, Journal of Developmental Physiology,15: 61-69 (1991).
  • Ward, R.M., “Pharmacologic enhancement of fetal lung maturation”, Clinics in Perinatology,21: 523-542 (1994). [53] Ballard,
  • “Glucocorticoid receptors and the role of glucocorticoids in fetal lung development”, Proceedings of the National Academy of Sciences of the United States of America,69: 2668-2672 (1972).
  • Arai, H., Kikuchi, W., Ishida, A., and Takada, G., “Dexamethasone-induced prenatal alveolar wall thinning is associated with a decrease in EIIIA+ fibronectin isoform in the fetal rat lung”, Biology of the Neonate, 87: 113-120 (2005).
  • Brenner, R.E., Felger, D., Winter, C., Christiansen, A., Hofmann, D., and Bartmann, P., “Effects of dexamethasone on proliferation, chemotaxis,
  • metabolism of human fetal lung fibroblasts”, Pediatric Pulmonology,32: 1-7 (2001).
  • fibronectin- [56] Cole, T.J., Solomon, N.M., Van Driel, R., Monk, J.A., Bird, D., Richardson, S.J., Dilley, R.J., and Hooper, S.B., “Altered epithelial cell proportions in the fetal lung of glucocorticoid receptor null mice”, American Journal of Respiratory Cell and Molecular Biology,30: 613- 619 (2004).
  • Snyder, J.M., Rodgers, H.F., O'Brien, J.A.,
  • Mahli, N., Magliato, S.A., and Durham, P.L.,
  • “Glucocorticoid effects on rabbit fetal lung
  • maturation in vivo: an ultrastructural
  • morphometric study”, The Anatomical Record, 232: 133-140 (1992).
  • Geliş Tarihi: 20/01/2009 Kabul Tarihi: 09/04/2009
Toplam 70 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Pervin Toparlak Bu kişi benim

Mesut Şahin Bu kişi benim

Ayça Gümüş Bu kişi benim

Erdal Balcan

Yayımlanma Tarihi 1 Mart 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 5 Sayı: 1

Kaynak Göster

APA Toparlak, P., Şahin, M., Gümüş, A., Balcan, E. (2009). FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, 5(1), 27-38.
AMA Toparlak P, Şahin M, Gümüş A, Balcan E. FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ. CBUJOS. Mart 2009;5(1):27-38.
Chicago Toparlak, Pervin, Mesut Şahin, Ayça Gümüş, ve Erdal Balcan. “FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 5, sy. 1 (Mart 2009): 27-38.
EndNote Toparlak P, Şahin M, Gümüş A, Balcan E (01 Mart 2009) FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 5 1 27–38.
IEEE P. Toparlak, M. Şahin, A. Gümüş, ve E. Balcan, “FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ”, CBUJOS, c. 5, sy. 1, ss. 27–38, 2009.
ISNAD Toparlak, Pervin vd. “FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi 5/1 (Mart 2009), 27-38.
JAMA Toparlak P, Şahin M, Gümüş A, Balcan E. FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ. CBUJOS. 2009;5:27–38.
MLA Toparlak, Pervin vd. “FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ”. Celal Bayar Üniversitesi Fen Bilimleri Dergisi, c. 5, sy. 1, 2009, ss. 27-38.
Vancouver Toparlak P, Şahin M, Gümüş A, Balcan E. FARE AKCİĞER GELİŞİMİNDE GLUKOKORTİKOİDLERİN FİBRONEKTİN, KADERİN VE BETA-KATENİN MOLEKÜLLERİNİN DAĞILIŞLARI ÜZERİNE ETKİSİ. CBUJOS. 2009;5(1):27-38.