Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 1 - 21, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1086966

Öz

Kaynakça

  • Acitas, S., Senoglu, B., Robust factorial ANCOVA with LTS error distributions, Hacet. J. Math. Stat., 47(2) (2018), 347-363. https://doi.org/10.15672/HJMS.201612918797
  • Akgül, F. G., Şenoğlu, B., Arslan, T., An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution, Energy Convers. Manag., 114 (2016), 234-240. https://doi.org/10.1016/j.enconman.2016.02.026
  • Bowman, K. O., Shenton, L. R., Weibull distributions when the shape parameter is defined, Comput Stat Data Anal, 36(3) (2001), 299-310. https://doi.org/10.1016/S0167-9473(00)00048-7
  • Calabria, R., Pulcini, G., An engineering approach to Bayes estimation for the Weibull distribution, Microelectron. Reliab., 34(5) (1994), 789-802. https://doi.org/10.1016/0026-2714(94)90004-3
  • Cordeiro, G. M., de Castro, M., A new family of generalized distributions, J. Stat. Comput. Simul., 81(7) (2011), 883-898. https://doi.org/10.1080/00949650903530745
  • Cordeiro, G. M., Ortega, E. M., Nadarajah, S., The Kumaraswamy Weibull distribution with application to failure data, J Franklin Inst, 347(8) (2010), 1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010
  • Cortez, P., Morais, A. D. J. R., A data mining approach to predict forest fires using meteorological data, New Trends in Artificial Intelligence: Proceedings of the 13th Portuguese Conference on Artificial Intelligence, Guimaraes, Portugal, (2007), 512-523.
  • Elbatal, I., Diab, L. S., Alim, N. A., Transmuted generalized linear exponential distribution, Int. J. Comput. Appl., 83(17) (2013), 29-37. https://doi.org/10.1515/eqc-2013-0020
  • Elbatal, I., Elgarhy, M., Statistical properties of Kumaraswamy quasi Lindley distribution, IJMTT, 4(10) (2013), 237-246.
  • Ergenç, C., Statistical Inference for Some Non-Normal Distributions, Master Thesis, Ankara University, 2021.
  • Eugene, N., Lee, C., Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31(4) (2002), 497-512. https://doi.org/10.1081/STA-120003130
  • Gomes, A. E., da-Silva, C. Q., Cordeiro, G. M., Ortega, E. M., A new lifetime model: the Kumaraswamy generalized Rayleigh distribution, J. Stat. Comput. Simul., 84(2) (2014), 290-309. https://doi.org/10.1080/00949655.2012.706813
  • Islam, M. Q., Tiku, M. L., Multiple linear regression model under nonnormality, Commun. Stat. Theory Methods, 33(10) (2005), 2443-2467. https://doi.org/10.1081/STA-200031519
  • Jones, M. C., Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages, Stat. Methodol., 6 (2008), 70–81. https://doi.org/10.1016/j.stamet.2008.04.001
  • Kantar, Y. M., Şenoğlu, B., A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Comput Geosci, 34(12) (2008), 1900-1909. https://doi.org/10.1016/j.cageo.2008.04.004
  • Keats, J. B., Lawrence, F. R., Wang, F. K., Weibull maximum likelihood parameter estimates with censored data, J. Qual. Technol., 29(1) (1997), 105-110. https://doi.org/10.1080/00224065.1997.11979730
  • Maurya, S. K., Singh, S. K., Singh, U., A new right-skewed upside down bathtub shaped heavytailed distribution and its applications, J. Mod. Appl. Stat. Methods, 19(1) (2020), eP2888. https://doi.org/10.22237/jmasm/1608552600
  • Mudholkar, G. S., Srivastava, D. K., Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42(2) (1993), 299-302.
  • Rocha, R., Nadarajah, S., Tomazella, V., Louzada, F., Eudes, A., New defective models based on the Kumaraswamy family of distributions with application to cancer data sets, Stat Methods Med Res, 26(4) (2017), 1737-1755. https://doi.org/10.1177/0962280215587976
  • Saeed, M. K., Salam, A., Rehman, A. U., Saeed, M. A., Comparison of six different methods of Weibull distribution for wind power assessment: A case study for a site in the Northern region of Pakistan, Sustain. Energy Technol. Assess., 36 (2019), 100541. https://doi.org/10.1016/j.seta.2019.100541
  • Sarhan, A. M., Zaindin, M., Modified Weibull distribution, APPS. Applied Sciences, 11 (2009), 123-136.
  • Serban, A., Paraschiv, L. S., Paraschiv, S., Assessment of wind energy potential based on Weibull and Rayleigh distribution models, Energy Rep., 6 (2020), 250-267. https://doi.org/10.1016/j.egyr.2020.08.048
  • Swain, J. J., Venkatraman, S., Wilson, J. R., Least-squares estimation of distribution functions in Johnson’s translation system, J Stat Comput Simul, 29(4) (1988), 271-297. https://doi.org/10.1080/00949658808811068
  • Wolfowitz, J., Estimation by the minimum distance method in nonparametric stochastic difference equations, Ann. Math. Stat., 25(2) (1954), 203-217. http://www.jstor.org/stable/2236727
  • Wolfowitz, J., Estimation by the minimum distance method, Ann Inst Stat Math, 5(1) (1953), 9-23.

Comparison of estimation methods for the Kumaraswamy Weibull distribution

Yıl 2023, , 1 - 21, 30.03.2023
https://doi.org/10.31801/cfsuasmas.1086966

Öz

In this study, the performances of the different parameter estimation methods are compared for the Kumaraswamy Weibull distribution via Monte Carlo simulation study. Maximum Likelihood (ML), Least Squares (LS), Weighted Least Squares (WLS), Cramer-von Mises (CM) and Anderson Darling (AD) methods are used in the comparisons. The results of the Monte Carlo simulation study demonstrate that ML estimators for the parameters of the Kumaraswamy Weibull distribution are more efficient than the other estimators. It is followed by AD estimator. At the end of the study, a real data set taken from the literature is used to illustrate the applicability of the Kumaraswamy Weibull distribution.

Kaynakça

  • Acitas, S., Senoglu, B., Robust factorial ANCOVA with LTS error distributions, Hacet. J. Math. Stat., 47(2) (2018), 347-363. https://doi.org/10.15672/HJMS.201612918797
  • Akgül, F. G., Şenoğlu, B., Arslan, T., An alternative distribution to Weibull for modeling the wind speed data: Inverse Weibull distribution, Energy Convers. Manag., 114 (2016), 234-240. https://doi.org/10.1016/j.enconman.2016.02.026
  • Bowman, K. O., Shenton, L. R., Weibull distributions when the shape parameter is defined, Comput Stat Data Anal, 36(3) (2001), 299-310. https://doi.org/10.1016/S0167-9473(00)00048-7
  • Calabria, R., Pulcini, G., An engineering approach to Bayes estimation for the Weibull distribution, Microelectron. Reliab., 34(5) (1994), 789-802. https://doi.org/10.1016/0026-2714(94)90004-3
  • Cordeiro, G. M., de Castro, M., A new family of generalized distributions, J. Stat. Comput. Simul., 81(7) (2011), 883-898. https://doi.org/10.1080/00949650903530745
  • Cordeiro, G. M., Ortega, E. M., Nadarajah, S., The Kumaraswamy Weibull distribution with application to failure data, J Franklin Inst, 347(8) (2010), 1399-1429. https://doi.org/10.1016/j.jfranklin.2010.06.010
  • Cortez, P., Morais, A. D. J. R., A data mining approach to predict forest fires using meteorological data, New Trends in Artificial Intelligence: Proceedings of the 13th Portuguese Conference on Artificial Intelligence, Guimaraes, Portugal, (2007), 512-523.
  • Elbatal, I., Diab, L. S., Alim, N. A., Transmuted generalized linear exponential distribution, Int. J. Comput. Appl., 83(17) (2013), 29-37. https://doi.org/10.1515/eqc-2013-0020
  • Elbatal, I., Elgarhy, M., Statistical properties of Kumaraswamy quasi Lindley distribution, IJMTT, 4(10) (2013), 237-246.
  • Ergenç, C., Statistical Inference for Some Non-Normal Distributions, Master Thesis, Ankara University, 2021.
  • Eugene, N., Lee, C., Famoye, F., Beta-normal distribution and its applications, Commun. Stat. Theory Methods, 31(4) (2002), 497-512. https://doi.org/10.1081/STA-120003130
  • Gomes, A. E., da-Silva, C. Q., Cordeiro, G. M., Ortega, E. M., A new lifetime model: the Kumaraswamy generalized Rayleigh distribution, J. Stat. Comput. Simul., 84(2) (2014), 290-309. https://doi.org/10.1080/00949655.2012.706813
  • Islam, M. Q., Tiku, M. L., Multiple linear regression model under nonnormality, Commun. Stat. Theory Methods, 33(10) (2005), 2443-2467. https://doi.org/10.1081/STA-200031519
  • Jones, M. C., Kumaraswamy’s distribution: A beta-type distribution with some tractability advantages, Stat. Methodol., 6 (2008), 70–81. https://doi.org/10.1016/j.stamet.2008.04.001
  • Kantar, Y. M., Şenoğlu, B., A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Comput Geosci, 34(12) (2008), 1900-1909. https://doi.org/10.1016/j.cageo.2008.04.004
  • Keats, J. B., Lawrence, F. R., Wang, F. K., Weibull maximum likelihood parameter estimates with censored data, J. Qual. Technol., 29(1) (1997), 105-110. https://doi.org/10.1080/00224065.1997.11979730
  • Maurya, S. K., Singh, S. K., Singh, U., A new right-skewed upside down bathtub shaped heavytailed distribution and its applications, J. Mod. Appl. Stat. Methods, 19(1) (2020), eP2888. https://doi.org/10.22237/jmasm/1608552600
  • Mudholkar, G. S., Srivastava, D. K., Exponentiated Weibull family for analyzing bathtub failure-rate data, IEEE Trans. Reliab., 42(2) (1993), 299-302.
  • Rocha, R., Nadarajah, S., Tomazella, V., Louzada, F., Eudes, A., New defective models based on the Kumaraswamy family of distributions with application to cancer data sets, Stat Methods Med Res, 26(4) (2017), 1737-1755. https://doi.org/10.1177/0962280215587976
  • Saeed, M. K., Salam, A., Rehman, A. U., Saeed, M. A., Comparison of six different methods of Weibull distribution for wind power assessment: A case study for a site in the Northern region of Pakistan, Sustain. Energy Technol. Assess., 36 (2019), 100541. https://doi.org/10.1016/j.seta.2019.100541
  • Sarhan, A. M., Zaindin, M., Modified Weibull distribution, APPS. Applied Sciences, 11 (2009), 123-136.
  • Serban, A., Paraschiv, L. S., Paraschiv, S., Assessment of wind energy potential based on Weibull and Rayleigh distribution models, Energy Rep., 6 (2020), 250-267. https://doi.org/10.1016/j.egyr.2020.08.048
  • Swain, J. J., Venkatraman, S., Wilson, J. R., Least-squares estimation of distribution functions in Johnson’s translation system, J Stat Comput Simul, 29(4) (1988), 271-297. https://doi.org/10.1080/00949658808811068
  • Wolfowitz, J., Estimation by the minimum distance method in nonparametric stochastic difference equations, Ann. Math. Stat., 25(2) (1954), 203-217. http://www.jstor.org/stable/2236727
  • Wolfowitz, J., Estimation by the minimum distance method, Ann Inst Stat Math, 5(1) (1953), 9-23.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı Matematik
Bölüm Research Article
Yazarlar

Cansu Ergenç 0000-0002-4722-0911

Birdal Şenoğlu 0000-0003-3707-2393

Yayımlanma Tarihi 30 Mart 2023
Gönderilme Tarihi 23 Mart 2022
Kabul Tarihi 9 Haziran 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Ergenç, C., & Şenoğlu, B. (2023). Comparison of estimation methods for the Kumaraswamy Weibull distribution. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(1), 1-21. https://doi.org/10.31801/cfsuasmas.1086966
AMA Ergenç C, Şenoğlu B. Comparison of estimation methods for the Kumaraswamy Weibull distribution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Mart 2023;72(1):1-21. doi:10.31801/cfsuasmas.1086966
Chicago Ergenç, Cansu, ve Birdal Şenoğlu. “Comparison of Estimation Methods for the Kumaraswamy Weibull Distribution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, sy. 1 (Mart 2023): 1-21. https://doi.org/10.31801/cfsuasmas.1086966.
EndNote Ergenç C, Şenoğlu B (01 Mart 2023) Comparison of estimation methods for the Kumaraswamy Weibull distribution. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 1 1–21.
IEEE C. Ergenç ve B. Şenoğlu, “Comparison of estimation methods for the Kumaraswamy Weibull distribution”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 72, sy. 1, ss. 1–21, 2023, doi: 10.31801/cfsuasmas.1086966.
ISNAD Ergenç, Cansu - Şenoğlu, Birdal. “Comparison of Estimation Methods for the Kumaraswamy Weibull Distribution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/1 (Mart 2023), 1-21. https://doi.org/10.31801/cfsuasmas.1086966.
JAMA Ergenç C, Şenoğlu B. Comparison of estimation methods for the Kumaraswamy Weibull distribution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:1–21.
MLA Ergenç, Cansu ve Birdal Şenoğlu. “Comparison of Estimation Methods for the Kumaraswamy Weibull Distribution”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 72, sy. 1, 2023, ss. 1-21, doi:10.31801/cfsuasmas.1086966.
Vancouver Ergenç C, Şenoğlu B. Comparison of estimation methods for the Kumaraswamy Weibull distribution. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(1):1-21.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.