Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2023, , 650 - 662, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1127781

Öz

Kaynakça

  • Kreyszig, E., Differential Geometry, Dover Publications Inc. Courier Corporation, New York, 2013.
  • Maekawa, T., Patrikalakis, N. M., Sakkalis, T., Yu, G., Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 15 (1988) 437-458.
  • Xu, Z., Feng, R., Sun, J., Analytic and algebraic properties of canal surfaces, Journal of Computational and Applied Mathematics, 195 (2006), 220–228. https://doi.org/10.1016/j.cam.2005.08.002
  • Wang, G. J., Tang, K., Tai, C. L., Parametric representation of a surface pencil with a common spatial geodesic, Computer Aided Geometric Design, 36 (5) (2004), 447–459.
  • Kasap, E., Akyıldız, F. T., Orbay, K., A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput., 201 (2008), 781-789. https://doi.org/10.1016/j.amc.2008.01.016
  • Li, C. Y., Wang, R. H., Zhu, C. G., Parametric representation of a surface pencil with a common line of curvature, Computer Aided Design, 43 (9) (2011), 1110–1117.
  • Küçükkarslan, Z. Y., On a family of surfaces with common asymptotic curve in the Galilean space $G_{3}$, J. Nonlinear Sci. Appl., 9 (2016) 518–523.
  • Lopez, R., Cyclic surfaces of constant Gauss curvature, Houston J. Math., 27 (2001), 799–805.
  • Lopez, R., Surfaces of constant Gauss Curvature in Lorentz-Minkowski Three-Space, Rocky Mountain J. Math., 33 (2003) 971-993.
  • Do Carmo, M. P., Differential Geometry of Curves and Surfaces, Prentice Hall, NJ, 1976.
  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press. Boca Raton, 1998.
  • Goemans, W., Van de Woestyne, I., Twisted surfaces in Euclidean and Minkowski 3-space, In: Pure and Applied Differential Geometry Padge, Shaker Verlag Aachen, Germany, (2012), 143-151.
  • Goemans, W., Van de Woestyne, I., Twisted surfaces with null rotation axis in Minkowski 3-space, Results Math., 70(1) (2016), 81-93. https://doi.org/10.1007/s00025-015-0462-2
  • Lopez, R., Moruz, M., Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc., 52(3) (2015), 523-535.
  • Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turkish J. Math., 28(2) (2004), 153-163.
  • Zhao, H. Y., Wang, G. J., A new method for designing a developable surface utilizing the surface pencil through a given curve, Progress in Nature Science, 18 (2008), 105–110.
  • Ergün, E., Bayram, E., Kasap, E., Surface pencil with a common line of curvature in Minkowski 3-space, Acta Mathematica Sinica-English Series, 30(12) (2014), 2103-2118.
  • Alegre, P., Arslan, K., Carriazo, A., Murathan C., Öztürk, G., Some special types of developable ruled surface, Hacettepe Journal of Mathematics and Statistics, 39(3) (2010), 319–325.
  • Hanson, A. J., Ma, H., Parallel transport approach to curve framing, Tech. Report, 425 (1995).
  • Dede, M., Helical extension curve of a space curve, Mediterranean Journal of Mathematics, 18 (2021), 1-10.
  • Ates, F., Gok, I., Ekmekci, F., N., Yaylı, Y., Characterizations of inclined curves according to parallel transport frame in E4 and Bishop frame in E3, Konuralp Journal of Mathematics, 7(1) (2019), 16-24.
  • Bishop, R. L., There is more than one way to frame a curve, Amer. Math. Monthly 82, (1975) 246–251.
  • Bloomenthal, J., Calculation of Reference Frames Along a Space Curve, Graphics Gems, Academic Press Professional, Inc., San Diego, CA, 1990.

Developable normal surface pencil

Yıl 2023, , 650 - 662, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1127781

Öz

In this paper, we introduce a new class of surfaces, called as normal surface pencil. We parameterize a normal surface pencil by using the principal normal vector $\mathbf{n}$ and the binormal vector $\mathbf{b}$ of the Frenet frame of a space curve $\alpha(s)$ as follows $\varphi(s,t)=\alpha(s)+y(s,t)\mathbf{n}+z(s,t)\mathbf{b}.$ A well known example of normal surface pencil is a canal surface. Finally, we propose the sufficient conditions of a normal surface pencil being a developable surface. Then several new examples of developable normal surface pencil are constructed from these conditions.

Kaynakça

  • Kreyszig, E., Differential Geometry, Dover Publications Inc. Courier Corporation, New York, 2013.
  • Maekawa, T., Patrikalakis, N. M., Sakkalis, T., Yu, G., Analysis and applications of pipe surfaces. Computer Aided Geometric Design, 15 (1988) 437-458.
  • Xu, Z., Feng, R., Sun, J., Analytic and algebraic properties of canal surfaces, Journal of Computational and Applied Mathematics, 195 (2006), 220–228. https://doi.org/10.1016/j.cam.2005.08.002
  • Wang, G. J., Tang, K., Tai, C. L., Parametric representation of a surface pencil with a common spatial geodesic, Computer Aided Geometric Design, 36 (5) (2004), 447–459.
  • Kasap, E., Akyıldız, F. T., Orbay, K., A generalization of surfaces family with common spatial geodesic, Appl. Math. Comput., 201 (2008), 781-789. https://doi.org/10.1016/j.amc.2008.01.016
  • Li, C. Y., Wang, R. H., Zhu, C. G., Parametric representation of a surface pencil with a common line of curvature, Computer Aided Design, 43 (9) (2011), 1110–1117.
  • Küçükkarslan, Z. Y., On a family of surfaces with common asymptotic curve in the Galilean space $G_{3}$, J. Nonlinear Sci. Appl., 9 (2016) 518–523.
  • Lopez, R., Cyclic surfaces of constant Gauss curvature, Houston J. Math., 27 (2001), 799–805.
  • Lopez, R., Surfaces of constant Gauss Curvature in Lorentz-Minkowski Three-Space, Rocky Mountain J. Math., 33 (2003) 971-993.
  • Do Carmo, M. P., Differential Geometry of Curves and Surfaces, Prentice Hall, NJ, 1976.
  • Gray, A., Modern Differential Geometry of Curves and Surfaces with Mathematica, CRC Press. Boca Raton, 1998.
  • Goemans, W., Van de Woestyne, I., Twisted surfaces in Euclidean and Minkowski 3-space, In: Pure and Applied Differential Geometry Padge, Shaker Verlag Aachen, Germany, (2012), 143-151.
  • Goemans, W., Van de Woestyne, I., Twisted surfaces with null rotation axis in Minkowski 3-space, Results Math., 70(1) (2016), 81-93. https://doi.org/10.1007/s00025-015-0462-2
  • Lopez, R., Moruz, M., Translation and homothetical surfaces in Euclidean space with constant curvature, J. Korean Math. Soc., 52(3) (2015), 523-535.
  • Izumiya, S., Takeuchi, N., New special curves and developable surfaces, Turkish J. Math., 28(2) (2004), 153-163.
  • Zhao, H. Y., Wang, G. J., A new method for designing a developable surface utilizing the surface pencil through a given curve, Progress in Nature Science, 18 (2008), 105–110.
  • Ergün, E., Bayram, E., Kasap, E., Surface pencil with a common line of curvature in Minkowski 3-space, Acta Mathematica Sinica-English Series, 30(12) (2014), 2103-2118.
  • Alegre, P., Arslan, K., Carriazo, A., Murathan C., Öztürk, G., Some special types of developable ruled surface, Hacettepe Journal of Mathematics and Statistics, 39(3) (2010), 319–325.
  • Hanson, A. J., Ma, H., Parallel transport approach to curve framing, Tech. Report, 425 (1995).
  • Dede, M., Helical extension curve of a space curve, Mediterranean Journal of Mathematics, 18 (2021), 1-10.
  • Ates, F., Gok, I., Ekmekci, F., N., Yaylı, Y., Characterizations of inclined curves according to parallel transport frame in E4 and Bishop frame in E3, Konuralp Journal of Mathematics, 7(1) (2019), 16-24.
  • Bishop, R. L., There is more than one way to frame a curve, Amer. Math. Monthly 82, (1975) 246–251.
  • Bloomenthal, J., Calculation of Reference Frames Along a Space Curve, Graphics Gems, Academic Press Professional, Inc., San Diego, CA, 1990.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Mustafa Dede 0000-0003-2652-637X

Yayımlanma Tarihi 30 Eylül 2023
Gönderilme Tarihi 8 Haziran 2022
Kabul Tarihi 10 Aralık 2022
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Dede, M. (2023). Developable normal surface pencil. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 650-662. https://doi.org/10.31801/cfsuasmas.1127781
AMA Dede M. Developable normal surface pencil. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Eylül 2023;72(3):650-662. doi:10.31801/cfsuasmas.1127781
Chicago Dede, Mustafa. “Developable Normal Surface Pencil”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, sy. 3 (Eylül 2023): 650-62. https://doi.org/10.31801/cfsuasmas.1127781.
EndNote Dede M (01 Eylül 2023) Developable normal surface pencil. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 650–662.
IEEE M. Dede, “Developable normal surface pencil”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 72, sy. 3, ss. 650–662, 2023, doi: 10.31801/cfsuasmas.1127781.
ISNAD Dede, Mustafa. “Developable Normal Surface Pencil”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (Eylül 2023), 650-662. https://doi.org/10.31801/cfsuasmas.1127781.
JAMA Dede M. Developable normal surface pencil. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:650–662.
MLA Dede, Mustafa. “Developable Normal Surface Pencil”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 72, sy. 3, 2023, ss. 650-62, doi:10.31801/cfsuasmas.1127781.
Vancouver Dede M. Developable normal surface pencil. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):650-62.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.