Araştırma Makalesi
BibTex RIS Kaynak Göster

On the extended Wright hypergeometric matrix function and its properties

Yıl 2023, , 606 - 617, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1147745

Öz

Recently, Bakhet et al. [9] presented the Wright hypergeometric matrix function $_{2}R_{1}^{(\tau )}(A,B;C;z)$ and derived several properties. Abdalla [6] has since applied fractional operators to this function. In this paper, with the help of the generalized Pochhammer matrix symbol $(A;B)_{n}$ and the generalized beta matrix function $\mathcal{B}(P,Q;\mathbb{X})$, we introduce and study an extended form of the Wright hypergeometric matrix function, $_{2}R_{1}^{(\tau )}((A,\mathbb{A}),B;C;z;\mathbb{X}).$ We establish several potentially useful results for this extended form, such as integral representations and fractional derivatives. We also derive some properties of the corresponding incomplete extended Wright hypergeometric matrix function.

Kaynakça

  • Abd-Elmageed, H., Hidan, M., Abdalla, M., Investigation for the k-analogue of $\tau$-Gauss hypergeometric matrix functions and associated fractional calculus, Linear and Multilinear Algebra, (2022), 1-14. https://doi.org/10.1080/03081087.2022.2161459
  • Abdalla, M., On the incomplete hypergeometric matrix functions, Ramanujan J., 43 (2017), 663-678. https://doi.org/10.1007/s11139-016-9795-z
  • Abdalla, A., Akel, M., Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal and Fractional, 6(6) (2022), 305. https://doi.org/10.3390/ fractalfract6060305
  • Abdalla, M., Bakhet, A., Extended Gauss hypergeometric matrix functions, Iran J Sci Technol Trans Sci., 42 (2018), 1465-1470. https://doi.org/10.1007/s40995-017-0183-3
  • Abdalla, M., Bakhet, A., Extension of beta matrix function, Asian J Math Comput Res., 9 (2016), 253-264.
  • Abdalla, M., Fractional operators for the Wright hypergeometric matrix functions, Advances in Difference Equations, (2020), 246. https://doi.org/10.1186/s13662-020-02704-y
  • Abul-Dahab, M. A., Bakhet, A. K., A certain generalized gamma matrix functions and their properties, J. Ana. Num. Theor., 3(1) (2015), 63-68. https://dx.doi.org/10.12785/jant/030110
  • Bakhet, A., Hyder, A. A., Almoneef, A. A., Niyaz, M., Soliman, A. H., On new matrix version extension of the incomplete Wright hypergeometric functions and their fractional calculus, Mathematics, 10(22) (2022), 4371. https://doi.org/10.3390/math10224371
  • Bakhet, A., Jiao, Y., He, F., On the Wright hypergeomertric matrix functions and their fractional calculus, Integral Transforms Spec. Funct., 30 (2019), 138-156. https://doi.org/10.1080/10652469.2018.1543669
  • Dwivedi, R., Sanjhira, R., On the matrix function $_{p}R_{q}(A;B;z)$ and its fractional calculus properties, Communications in Mathematics, 31(1) (2023), 43-56. https://doi.org/10.46298/cm.10205
  • Hidan, M., Akel, M., Abd-Elmageed, H., Abdalla, M., Solution of fractional kinetic equations involving extended $(k,\tau)$-Gauss hypergeometric matrix functions, AIMS Math., 7(8) (2022), 14474-14491. https://doi.org/10.3934/math.2022798
  • Jodar, L., Cortes, J. C., Some properties of gamma and beta matrix functions, Appl. Math. Lett., 11 (1998), 89-93. https://doi.org/10.1016/S0893-9659(97)00139-0
  • Jodar, L., Cortes, J. C., On the hypergeometric matrix functions, J. Compute. Appl. Math., 99 (1998), 205-217. https://doi.org/10.1016/S0377-0427(98)00158-7
  • Khammash, G. S., Agarwal, P., Choi, J., Extended k-gamma and k-beta functions of matrix arguments, Mathematics, 8 (2020), 1715. https://doi.org/10.3390/math8101715
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, (2006), 204.
  • Özarslan, M. A., Ustaoğlu, C., Incomplete Caputo fractional derivative operators, Adv. Differ. Equ., (2018), 209. https://doi.org/10.1186/s13662-018-1656-1
  • Özarslan, M. A., Ustaoğlu, C., Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, Mathematics, 7 (2018), 483. https://doi.org/10.3390/math7050483
  • Verma, A., On the incomplete Srivastava‘s triple hypergeometric matrix functions, Quaest Math., (2020), 1-24. https://doi.org/10.2989/16073606.2020.1753123
  • Verma, A., Yadav, S., On the incomplete second Appell hypergeometric matrix functions, Linear Multilinear Algebra, (2019). https://doi.org/10.1080/03081087.2019.1640178
  • Verma, A., Dwivedi, R., Sahai, V., Some extended hypergeometric matrix functions and their fractional calculus, (2020), arXiv:2011.00772v1. https://doi.org/10.48550/arXiv.2011.00772
  • Zou, C., Yu, M., Bakhet, A., He, F., On the matrix versions of incomplete extended gamma and beta functions and their applications for the incomplete Bessel, Complexity, (2020). https://doi.org/10.1155/2021/5586021
Yıl 2023, , 606 - 617, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1147745

Öz

Kaynakça

  • Abd-Elmageed, H., Hidan, M., Abdalla, M., Investigation for the k-analogue of $\tau$-Gauss hypergeometric matrix functions and associated fractional calculus, Linear and Multilinear Algebra, (2022), 1-14. https://doi.org/10.1080/03081087.2022.2161459
  • Abdalla, M., On the incomplete hypergeometric matrix functions, Ramanujan J., 43 (2017), 663-678. https://doi.org/10.1007/s11139-016-9795-z
  • Abdalla, A., Akel, M., Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal and Fractional, 6(6) (2022), 305. https://doi.org/10.3390/ fractalfract6060305
  • Abdalla, M., Bakhet, A., Extended Gauss hypergeometric matrix functions, Iran J Sci Technol Trans Sci., 42 (2018), 1465-1470. https://doi.org/10.1007/s40995-017-0183-3
  • Abdalla, M., Bakhet, A., Extension of beta matrix function, Asian J Math Comput Res., 9 (2016), 253-264.
  • Abdalla, M., Fractional operators for the Wright hypergeometric matrix functions, Advances in Difference Equations, (2020), 246. https://doi.org/10.1186/s13662-020-02704-y
  • Abul-Dahab, M. A., Bakhet, A. K., A certain generalized gamma matrix functions and their properties, J. Ana. Num. Theor., 3(1) (2015), 63-68. https://dx.doi.org/10.12785/jant/030110
  • Bakhet, A., Hyder, A. A., Almoneef, A. A., Niyaz, M., Soliman, A. H., On new matrix version extension of the incomplete Wright hypergeometric functions and their fractional calculus, Mathematics, 10(22) (2022), 4371. https://doi.org/10.3390/math10224371
  • Bakhet, A., Jiao, Y., He, F., On the Wright hypergeomertric matrix functions and their fractional calculus, Integral Transforms Spec. Funct., 30 (2019), 138-156. https://doi.org/10.1080/10652469.2018.1543669
  • Dwivedi, R., Sanjhira, R., On the matrix function $_{p}R_{q}(A;B;z)$ and its fractional calculus properties, Communications in Mathematics, 31(1) (2023), 43-56. https://doi.org/10.46298/cm.10205
  • Hidan, M., Akel, M., Abd-Elmageed, H., Abdalla, M., Solution of fractional kinetic equations involving extended $(k,\tau)$-Gauss hypergeometric matrix functions, AIMS Math., 7(8) (2022), 14474-14491. https://doi.org/10.3934/math.2022798
  • Jodar, L., Cortes, J. C., Some properties of gamma and beta matrix functions, Appl. Math. Lett., 11 (1998), 89-93. https://doi.org/10.1016/S0893-9659(97)00139-0
  • Jodar, L., Cortes, J. C., On the hypergeometric matrix functions, J. Compute. Appl. Math., 99 (1998), 205-217. https://doi.org/10.1016/S0377-0427(98)00158-7
  • Khammash, G. S., Agarwal, P., Choi, J., Extended k-gamma and k-beta functions of matrix arguments, Mathematics, 8 (2020), 1715. https://doi.org/10.3390/math8101715
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, (2006), 204.
  • Özarslan, M. A., Ustaoğlu, C., Incomplete Caputo fractional derivative operators, Adv. Differ. Equ., (2018), 209. https://doi.org/10.1186/s13662-018-1656-1
  • Özarslan, M. A., Ustaoğlu, C., Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, Mathematics, 7 (2018), 483. https://doi.org/10.3390/math7050483
  • Verma, A., On the incomplete Srivastava‘s triple hypergeometric matrix functions, Quaest Math., (2020), 1-24. https://doi.org/10.2989/16073606.2020.1753123
  • Verma, A., Yadav, S., On the incomplete second Appell hypergeometric matrix functions, Linear Multilinear Algebra, (2019). https://doi.org/10.1080/03081087.2019.1640178
  • Verma, A., Dwivedi, R., Sahai, V., Some extended hypergeometric matrix functions and their fractional calculus, (2020), arXiv:2011.00772v1. https://doi.org/10.48550/arXiv.2011.00772
  • Zou, C., Yu, M., Bakhet, A., He, F., On the matrix versions of incomplete extended gamma and beta functions and their applications for the incomplete Bessel, Complexity, (2020). https://doi.org/10.1155/2021/5586021
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Research Article
Yazarlar

Halil Gezer 0000-0002-1248-989X

Cem Kaanoglu 0000-0001-7733-041X

Yayımlanma Tarihi 30 Eylül 2023
Gönderilme Tarihi 23 Temmuz 2022
Kabul Tarihi 27 Mart 2023
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Gezer, H., & Kaanoglu, C. (2023). On the extended Wright hypergeometric matrix function and its properties. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 606-617. https://doi.org/10.31801/cfsuasmas.1147745
AMA Gezer H, Kaanoglu C. On the extended Wright hypergeometric matrix function and its properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Eylül 2023;72(3):606-617. doi:10.31801/cfsuasmas.1147745
Chicago Gezer, Halil, ve Cem Kaanoglu. “On the Extended Wright Hypergeometric Matrix Function and Its Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, sy. 3 (Eylül 2023): 606-17. https://doi.org/10.31801/cfsuasmas.1147745.
EndNote Gezer H, Kaanoglu C (01 Eylül 2023) On the extended Wright hypergeometric matrix function and its properties. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 606–617.
IEEE H. Gezer ve C. Kaanoglu, “On the extended Wright hypergeometric matrix function and its properties”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 72, sy. 3, ss. 606–617, 2023, doi: 10.31801/cfsuasmas.1147745.
ISNAD Gezer, Halil - Kaanoglu, Cem. “On the Extended Wright Hypergeometric Matrix Function and Its Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (Eylül 2023), 606-617. https://doi.org/10.31801/cfsuasmas.1147745.
JAMA Gezer H, Kaanoglu C. On the extended Wright hypergeometric matrix function and its properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:606–617.
MLA Gezer, Halil ve Cem Kaanoglu. “On the Extended Wright Hypergeometric Matrix Function and Its Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 72, sy. 3, 2023, ss. 606-17, doi:10.31801/cfsuasmas.1147745.
Vancouver Gezer H, Kaanoglu C. On the extended Wright hypergeometric matrix function and its properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):606-17.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.