BibTex RIS Cite
Year 2018, Volume: 67 Issue: 2, 298 - 305, 01.08.2018

References

  • Durrmeyer, J L, Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments, These de 3e cycle, Faculte des Sciences de l’Universite de Paris, 1967.
  • Derriennic, M. M., Surl approximation de fonctions integrables sur [0; 1] par des polynomes de Bernstein modi…es, J. Approx. Theory, 32 (1981) 325–343.
  • Lupas, A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9 (1987), 85-92, Calculus (Cluj-Napoca, 1987), Preprint, 9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026).
  • Gupta, V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comp., , 191(1), (2008) 172-178.
  • Zeng, X. M., Lin, D. and Li, L., A note on approximation properties of q-Durrmeyer operators, Appl. Math. Comp., 216(3) (2010) 819–821.
  • Mishra, V. N. and Patel, P., A short note on approximation properties of Stancu generaliza- tion of q-Durrmeyer operators, Fixed Point Th. Appl., 84(1) (2013) 5 pages.
  • Mishra, V. N. and Patel, P., On generalized integral Bernstein operators based on q-integers, Appl. Math. Comp., 242 (2014) 931-944.
  • Gupta, V. and Sharma, H. Recurrence formula and better approximation for q-Durrmeyer operators, Lobachevskii J. Math., 32(2) (2011) 140–145.
  • De Sole, A.and Kac, V., On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, (9) Mat. Appl., 16(1) (2005) 29.
  • Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(8) (1968) 1173-1194.
  • Mohapatra R.N. and Walczak, Z., Remarks on a class of Szász-Mirakyan type operators, East J. Approx. 15(2) (2009) 197-206.
  • Içöz, G.and Mohapatra, R. N., Approximation properties by q-Durrmeyer-Stancu operators. Anal. Theory Appl. 29(4) (2013) 373–383.
  • Mishra, V. N. and Patel, P., Approximation by the Durrmeyer-Baskakov-Stancu operators, Lobachevskii J. Math., 34(3) (2013) 272–281.
  • Mishra V. N. and Patel, P., The Durrmeyer type modi…cation of the q-Baskakov type oper- ators with two parameter and , Numerical Algorithms, 67(4) (2014) 753-769.
  • Yurdakadim, T., Some Korovkin type results via power series method in modular spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 65-76.
  • Karaisa, A. and Aral, A., Some approximation properties of Kontorovich variant of Chlodowsky operators based on q-integers, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 97-119.
  • Içöz, G. and Mohapatra, R. N., Weighted approximation properties of Stancu type modi…ca- tion of q-Szász-Durrmeyer operators, Commun. Ser. A1 Math. Stat, 65(1) (2016) 87-103.
  • Içöz, G. and Bayram, C., q-analogue of Mittag-Le- er operators, Miskolc Mathematical Notes (1), (2017), 211-221.
  • Mishra, V. N., Khatri, K., Mishra, L.N. and Deemmala, Inverse result in simultaneous approx- imation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, , (2013) 586. doi:10.1186/1029-242X-2013-586.
  • Mishra, V. N., K Khatri, and Mishra, L. N., Statistical approximation by Kantorovich- typediscrete q-Betaoperators, doi:10.1186/1687-1847-2013-345.
  • Advances inDiğ erence Equations, (1) (2013)

THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS

Year 2018, Volume: 67 Issue: 2, 298 - 305, 01.08.2018

References

  • Durrmeyer, J L, Une formule d’inversion de la transformee de Laplace: Applications a la theorie des moments, These de 3e cycle, Faculte des Sciences de l’Universite de Paris, 1967.
  • Derriennic, M. M., Surl approximation de fonctions integrables sur [0; 1] par des polynomes de Bernstein modi…es, J. Approx. Theory, 32 (1981) 325–343.
  • Lupas, A., A q-analogue of the Bernstein operator, University of Cluj-Napoca, Seminar on numerical and statistical calculus, 9 (1987), 85-92, Calculus (Cluj-Napoca, 1987), Preprint, 9 Univ. Babes-Bolyai, Cluj. MR0956939 (90b:41026).
  • Gupta, V., Some approximation properties of q-Durrmeyer operators, Appl. Math. Comp., , 191(1), (2008) 172-178.
  • Zeng, X. M., Lin, D. and Li, L., A note on approximation properties of q-Durrmeyer operators, Appl. Math. Comp., 216(3) (2010) 819–821.
  • Mishra, V. N. and Patel, P., A short note on approximation properties of Stancu generaliza- tion of q-Durrmeyer operators, Fixed Point Th. Appl., 84(1) (2013) 5 pages.
  • Mishra, V. N. and Patel, P., On generalized integral Bernstein operators based on q-integers, Appl. Math. Comp., 242 (2014) 931-944.
  • Gupta, V. and Sharma, H. Recurrence formula and better approximation for q-Durrmeyer operators, Lobachevskii J. Math., 32(2) (2011) 140–145.
  • De Sole, A.and Kac, V., On integral representations of q-gamma and q-beta functions, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei, (9) Mat. Appl., 16(1) (2005) 29.
  • Stancu, D. D., Approximation of functions by a new class of linear polynomial operators, Rev. Roumaine Math. Pures Appl., 13(8) (1968) 1173-1194.
  • Mohapatra R.N. and Walczak, Z., Remarks on a class of Szász-Mirakyan type operators, East J. Approx. 15(2) (2009) 197-206.
  • Içöz, G.and Mohapatra, R. N., Approximation properties by q-Durrmeyer-Stancu operators. Anal. Theory Appl. 29(4) (2013) 373–383.
  • Mishra, V. N. and Patel, P., Approximation by the Durrmeyer-Baskakov-Stancu operators, Lobachevskii J. Math., 34(3) (2013) 272–281.
  • Mishra V. N. and Patel, P., The Durrmeyer type modi…cation of the q-Baskakov type oper- ators with two parameter and , Numerical Algorithms, 67(4) (2014) 753-769.
  • Yurdakadim, T., Some Korovkin type results via power series method in modular spaces, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 65-76.
  • Karaisa, A. and Aral, A., Some approximation properties of Kontorovich variant of Chlodowsky operators based on q-integers, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 65(2) (2016) 97-119.
  • Içöz, G. and Mohapatra, R. N., Weighted approximation properties of Stancu type modi…ca- tion of q-Szász-Durrmeyer operators, Commun. Ser. A1 Math. Stat, 65(1) (2016) 87-103.
  • Içöz, G. and Bayram, C., q-analogue of Mittag-Le- er operators, Miskolc Mathematical Notes (1), (2017), 211-221.
  • Mishra, V. N., Khatri, K., Mishra, L.N. and Deemmala, Inverse result in simultaneous approx- imation by Baskakov-Durrmeyer-Stancu operators, Journal of Inequalities and Applications, , (2013) 586. doi:10.1186/1029-242X-2013-586.
  • Mishra, V. N., K Khatri, and Mishra, L. N., Statistical approximation by Kantorovich- typediscrete q-Betaoperators, doi:10.1186/1687-1847-2013-345.
  • Advances inDiğ erence Equations, (1) (2013)
There are 21 citations in total.

Details

Other ID JA32UT59CP
Journal Section Research Article
Authors

Vishnu Narayan Mıshra This is me

Prashantkumar Patel This is me

Publication Date August 1, 2018
Submission Date August 1, 2018
Published in Issue Year 2018 Volume: 67 Issue: 2

Cite

APA Mıshra, V. N., & Patel, P. (2018). THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 67(2), 298-305.
AMA Mıshra VN, Patel P. THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2018;67(2):298-305.
Chicago Mıshra, Vishnu Narayan, and Prashantkumar Patel. “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR Q-DERIVATIVE OF INTEGRAL GENERALIZATION OF Q-BERNSTEIN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67, no. 2 (August 2018): 298-305.
EndNote Mıshra VN, Patel P (August 1, 2018) THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67 2 298–305.
IEEE V. N. Mıshra and P. Patel, “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 67, no. 2, pp. 298–305, 2018.
ISNAD Mıshra, Vishnu Narayan - Patel, Prashantkumar. “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR Q-DERIVATIVE OF INTEGRAL GENERALIZATION OF Q-BERNSTEIN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 67/2 (August 2018), 298-305.
JAMA Mıshra VN, Patel P. THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67:298–305.
MLA Mıshra, Vishnu Narayan and Prashantkumar Patel. “THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR Q-DERIVATIVE OF INTEGRAL GENERALIZATION OF Q-BERNSTEIN OPERATORS”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 67, no. 2, 2018, pp. 298-05.
Vancouver Mıshra VN, Patel P. THE VORONOVSKAJA TYPE ASYMPTOTIC FORMULA FOR q-DERIVATIVE OF INTEGRAL GENERALIZATION OF q-BERNSTEIN OPERATORS. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2018;67(2):298-305.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.