Research Article
BibTex RIS Cite

Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰

Year 2019, Volume: 68 Issue: 2, 1294 - 1300, 01.08.2019
https://doi.org/10.31801/cfsuasmas.524481

Abstract

The equitable edge chromatic number is the minimum number of colors required to color the edges of a graph G and satisfies the criterion, if for each vertex v∈V(G), the number of edges of any one color incident with v differs from the number of edges of any other color incident with v by atmost one. In this paper, the equitable edge chromatic number of tensor product of Path P_{m} coupled with Crown S_{n}⁰ and also two Crown graphs S_{m}⁰ along with S_{n}⁰ are obtained.

References

  • Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, New York; The Macmillan Press Ltd, 1976.
  • Harary, Frank, Graph Theory, Narosa Publishing home 1969.
  • Hilton, A.J.W. and de Werra, D.,A sufficient condition for equitable edge-colorings of simple graphs, Discrete Mathematics 128, (1994), 179-201.
  • Meyer, W., Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920-922.
  • Veninstine Vivik, J. and Girija, G., Equitable edge coloring of some graphs, Utilitas Mathematica, 96, (2015), 27--32.
  • Veninstine Vivik, J., and Girija, G., Equitable Edge Chromatic Number of Mycielskian of Graphs, Far East Journal of Mathematics, 101(9), 2017, 1887-1895.
  • Vizing, V.G., Critical graphs with given chromatic class, Metody Diskret. Analiz., 5(1965), 9-17.
  • Weichsel, Paul.M., The Kronecker product of graphs, Proc. Amer. Math. Society, Vol.8, (1962), 47-52.
  • Lin, Wu-Hsiung and Chang, Gerard, J., Equitable Colorings of Kronecker product of Graphs, Discrete Applied Mathematics, Vol.158, (2010), 1816-1826.
  • Zhang, Xia and Liu, Guizhen, Equitable edge-colorings of simple graphs, Journal of Graph Theory, 66, (2010), 175-197.
Year 2019, Volume: 68 Issue: 2, 1294 - 1300, 01.08.2019
https://doi.org/10.31801/cfsuasmas.524481

Abstract

References

  • Bondy, J. A. and Murty, U. S. R., Graph Theory with Applications, New York; The Macmillan Press Ltd, 1976.
  • Harary, Frank, Graph Theory, Narosa Publishing home 1969.
  • Hilton, A.J.W. and de Werra, D.,A sufficient condition for equitable edge-colorings of simple graphs, Discrete Mathematics 128, (1994), 179-201.
  • Meyer, W., Equitable Coloring, Amer. Math. Monthly, 80 (1973), 920-922.
  • Veninstine Vivik, J. and Girija, G., Equitable edge coloring of some graphs, Utilitas Mathematica, 96, (2015), 27--32.
  • Veninstine Vivik, J., and Girija, G., Equitable Edge Chromatic Number of Mycielskian of Graphs, Far East Journal of Mathematics, 101(9), 2017, 1887-1895.
  • Vizing, V.G., Critical graphs with given chromatic class, Metody Diskret. Analiz., 5(1965), 9-17.
  • Weichsel, Paul.M., The Kronecker product of graphs, Proc. Amer. Math. Society, Vol.8, (1962), 47-52.
  • Lin, Wu-Hsiung and Chang, Gerard, J., Equitable Colorings of Kronecker product of Graphs, Discrete Applied Mathematics, Vol.158, (2010), 1816-1826.
  • Zhang, Xia and Liu, Guizhen, Equitable edge-colorings of simple graphs, Journal of Graph Theory, 66, (2010), 175-197.
There are 10 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

J. Veninstine Vivik This is me 0000-0003-3192-003X

Publication Date August 1, 2019
Submission Date February 5, 2018
Acceptance Date June 25, 2018
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Veninstine Vivik, J. (2019). Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1294-1300. https://doi.org/10.31801/cfsuasmas.524481
AMA Veninstine Vivik J. Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1294-1300. doi:10.31801/cfsuasmas.524481
Chicago Veninstine Vivik, J. “Equitable Edge Chromatic Number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1294-1300. https://doi.org/10.31801/cfsuasmas.524481.
EndNote Veninstine Vivik J (August 1, 2019) Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1294–1300.
IEEE J. Veninstine Vivik, “Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1294–1300, 2019, doi: 10.31801/cfsuasmas.524481.
ISNAD Veninstine Vivik, J. “Equitable Edge Chromatic Number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1294-1300. https://doi.org/10.31801/cfsuasmas.524481.
JAMA Veninstine Vivik J. Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1294–1300.
MLA Veninstine Vivik, J. “Equitable Edge Chromatic Number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1294-00, doi:10.31801/cfsuasmas.524481.
Vancouver Veninstine Vivik J. Equitable edge chromatic number of P_{m}⊗S_{n}⁰ and S_{m}⁰⊗S_{n}⁰. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1294-300.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.