Research Article
BibTex RIS Cite

Spherical indicatrices of a Bertrand curve in three dimensional Lie groups

Year 2019, Volume: 68 Issue: 2, 1930 - 1938, 01.08.2019
https://doi.org/10.31801/cfsuasmas.571964

Abstract

In this paper, new representations of a Bertrand curve pair in three dimensional Lie groups with bi-invariant metric are given. Besides, the spherical indicatrices of a Bertrand curve pair are obtained and the relations between the spherical indicatrices and new representations of Bertrand curve pair are shown.

References

  • Ahmat, T. A., New special curves and their spherical indicatrices,Global Journal of Advanced Research on Classical and Modern Geometries, 1 (2), (2012), 28-38.
  • Cöken, A. C. and Çiftçi, Ü., A note on the geometry of Lie groups, Nonlinear Analysis, TMA68 (2008), 2013-2016.
  • Crouch, P. and Leite, F. S., The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst. 1(2), (1995), 177-202.
  • Çiftçi, Ü., A generalization of Lancert's theorem, J. Geom. Phys. 59 (2009), 1597-1603.
  • Do Espırito-Santo, N., Fornari, S., Frensel, K. and Ripoll, J., Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math. 111 (4), (2003), 459-470.
  • Ekmekci, N. and İlarslan, K., On Bertrand curves and their characterization, Differ. Geom.Dyn.Syst. 3 (2001), no. 2, 17-24.
  • Gök, İ., Okuyucu, O. Z., Ekmekci, N. and Yaylı, Y., On Mannheim partner curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
  • Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), 97--109.
  • Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2), (2004)153--163.
  • Kula, L. and Yaylı, Y., On slant helix and its sphereical indicatrix, Applied Mathematics and Computation, 169 (2005), 600-6007.
  • Matsuda, H. and Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50 (2003), 41--58.
  • Okuyucu, O. Z., Gök, İ., Yaylı, Y. and Ekmekci, N., Bertrand curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
  • Okuyucu, O.Z., Gök, İ., Yaylı, Y. and Ekmekçi, F.N., Slant helices in three dimensional Lie groups, Applied Mathematics and Computation, 221 (2013), 672--683.
  • Tunçer, Y. and Ünal, S., New representations of Bertrand pairs in Euclidean 3-space, Applied Mathematics and Computation, 219 (2012), 1833-1842.
  • Whittemore, J.K., Bertrand curves and helices, Duke Math. J. 6(1), (1940), 235-245.
Year 2019, Volume: 68 Issue: 2, 1930 - 1938, 01.08.2019
https://doi.org/10.31801/cfsuasmas.571964

Abstract

References

  • Ahmat, T. A., New special curves and their spherical indicatrices,Global Journal of Advanced Research on Classical and Modern Geometries, 1 (2), (2012), 28-38.
  • Cöken, A. C. and Çiftçi, Ü., A note on the geometry of Lie groups, Nonlinear Analysis, TMA68 (2008), 2013-2016.
  • Crouch, P. and Leite, F. S., The dynamic interpolation problem: on Riemannian manifolds, Lie groups and symmetric spaces, J. Dyn. Control Syst. 1(2), (1995), 177-202.
  • Çiftçi, Ü., A generalization of Lancert's theorem, J. Geom. Phys. 59 (2009), 1597-1603.
  • Do Espırito-Santo, N., Fornari, S., Frensel, K. and Ripoll, J., Constant mean curvature hypersurfaces in a Lie group with a bi-invariant metric, Manuscripta Math. 111 (4), (2003), 459-470.
  • Ekmekci, N. and İlarslan, K., On Bertrand curves and their characterization, Differ. Geom.Dyn.Syst. 3 (2001), no. 2, 17-24.
  • Gök, İ., Okuyucu, O. Z., Ekmekci, N. and Yaylı, Y., On Mannheim partner curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
  • Izumiya, S. and Takeuchi, N., Generic properties of helices and Bertrand curves, J. Geom. 74 (2002), 97--109.
  • Izumiya, S. and Takeuchi, N., New special curves and developable surfaces, Turkish J. Math. 28 (2), (2004)153--163.
  • Kula, L. and Yaylı, Y., On slant helix and its sphereical indicatrix, Applied Mathematics and Computation, 169 (2005), 600-6007.
  • Matsuda, H. and Yorozu, S., Notes on Bertrand curves, Yokohama Mathematical Journal, 50 (2003), 41--58.
  • Okuyucu, O. Z., Gök, İ., Yaylı, Y. and Ekmekci, N., Bertrand curves in three dimensional Lie groups, Miskolc Mathematical Notes, 17(2), (2017), 999-1010.
  • Okuyucu, O.Z., Gök, İ., Yaylı, Y. and Ekmekçi, F.N., Slant helices in three dimensional Lie groups, Applied Mathematics and Computation, 221 (2013), 672--683.
  • Tunçer, Y. and Ünal, S., New representations of Bertrand pairs in Euclidean 3-space, Applied Mathematics and Computation, 219 (2012), 1833-1842.
  • Whittemore, J.K., Bertrand curves and helices, Duke Math. J. 6(1), (1940), 235-245.
There are 15 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Review Articles
Authors

Ali Çakmak 0000-0002-2783-9311

Sezai Kızıltuğ

Publication Date August 1, 2019
Submission Date March 29, 2018
Acceptance Date March 12, 2019
Published in Issue Year 2019 Volume: 68 Issue: 2

Cite

APA Çakmak, A., & Kızıltuğ, S. (2019). Spherical indicatrices of a Bertrand curve in three dimensional Lie groups. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 68(2), 1930-1938. https://doi.org/10.31801/cfsuasmas.571964
AMA Çakmak A, Kızıltuğ S. Spherical indicatrices of a Bertrand curve in three dimensional Lie groups. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. August 2019;68(2):1930-1938. doi:10.31801/cfsuasmas.571964
Chicago Çakmak, Ali, and Sezai Kızıltuğ. “Spherical Indicatrices of a Bertrand Curve in Three Dimensional Lie Groups”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68, no. 2 (August 2019): 1930-38. https://doi.org/10.31801/cfsuasmas.571964.
EndNote Çakmak A, Kızıltuğ S (August 1, 2019) Spherical indicatrices of a Bertrand curve in three dimensional Lie groups. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68 2 1930–1938.
IEEE A. Çakmak and S. Kızıltuğ, “Spherical indicatrices of a Bertrand curve in three dimensional Lie groups”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 68, no. 2, pp. 1930–1938, 2019, doi: 10.31801/cfsuasmas.571964.
ISNAD Çakmak, Ali - Kızıltuğ, Sezai. “Spherical Indicatrices of a Bertrand Curve in Three Dimensional Lie Groups”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 68/2 (August 2019), 1930-1938. https://doi.org/10.31801/cfsuasmas.571964.
JAMA Çakmak A, Kızıltuğ S. Spherical indicatrices of a Bertrand curve in three dimensional Lie groups. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68:1930–1938.
MLA Çakmak, Ali and Sezai Kızıltuğ. “Spherical Indicatrices of a Bertrand Curve in Three Dimensional Lie Groups”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 68, no. 2, 2019, pp. 1930-8, doi:10.31801/cfsuasmas.571964.
Vancouver Çakmak A, Kızıltuğ S. Spherical indicatrices of a Bertrand curve in three dimensional Lie groups. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2019;68(2):1930-8.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.