BibTex RIS Kaynak Göster

ON MEUSNIER THEOREM FOR PARALLEL SURFACES

Yıl 2017, Cilt: 66 Sayı: 1, 187 - 198, 01.02.2017
https://doi.org/10.1501/Commua1_0000000788

Öz

In this paper, the geodesic curvature, the normal curvature, thegeodesic torsion and the curvature of the image curve on a parallel surfaceof a given curve on a surface are obtained. Moreover, Meusnier theorem forparallel surfaces are discussed

Kaynakça

  • W. Blaschke, Diferensiyel Geometri Dersleri, ·Istanbul Üniversitesi Yay. No. 433, 1949.
  • L. Brand, Vector and Tensor Analysis, John Wiley & Sons Inc., 1948.
  • T. Craig, Note on parallel surfaces, Journal Für Die Reine und Angewandte Mathematik (Crelle’s Journal), 94 (1883), 162-170.
  • A. C. Çöken, Ü. Çiftci, and C. Ekici, On parallel timelike ruled surfaces with timelike rulings, Kuwait Journal of Science & Engineering, 35 (2008), 21-31.
  • L.P. Eisenhart, A Treatise on the Diğ erential Geometry of Curves and Surfaces, Boston: New York [etc.] Ginn and Company, 1909.
  • A. Görgülü, A. C. Çöken, The Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 7(3), (1994), 221-225.
  • A. Görgülü, A. C. Çöken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 6(2), (1993), 165.
  • H. H. Hacısaliho¼glu, Diferensiyel Geometri, ·Inönü Ünv. Fen Edebiyat Fak. Yayınları, No.2, S. Kızıltu¼g, Ö. Tarakcı, Y. Yaylı, On the Curves Lying on Parallel Surfaces in the Euclidean space E3, Journal of Advanced Research in Dynamical and Control Systems, 5(3), (2013), 35.
  • E. Kreyszig, Diğ erential Geometry, Dover Publications, Inc.,1991.
  • ¸S. Nizamoglu, Surfaces Réglées Parallèles, Ege Üniv. Fen Fak. Derg., 9A, (1986), 37-48.
  • B. O’Neill, Elementary Diğ erential Geometry, Acedemic Press, Inc., 1966.
  • M. Önder, S. Kızıltu¼g, Bertrand and Mannheim Partner D-Curves on Parallel Surfaces in Minkowski 3-Space, Internatıonal journal of Geometry, 1(2), (2012), 34-45.
  • K. R. Park, G. I. Kim, Oğ sets of ruled surfaces, J. Korean Computer Graphics Society, 4, (1998), 69-75.
  • A. Sabuncuo¼glu, Diferensiyel Geometri, Nobel Yayın Da¼gıtım, 2001.
  • D. W. Yoon, Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical J., 30(4), (2008), 637-644.
  • Dirk J. Struik, Lectures on Classical Diğ erential Geometry, Dover Publications, Inc., 1961.
  • Current address : ÜM ·IT Z·IYA SAVCI: Celal Bayar University, Department of Mathematics Education , 45900, Manisa, TURKEY
Yıl 2017, Cilt: 66 Sayı: 1, 187 - 198, 01.02.2017
https://doi.org/10.1501/Commua1_0000000788

Öz

Kaynakça

  • W. Blaschke, Diferensiyel Geometri Dersleri, ·Istanbul Üniversitesi Yay. No. 433, 1949.
  • L. Brand, Vector and Tensor Analysis, John Wiley & Sons Inc., 1948.
  • T. Craig, Note on parallel surfaces, Journal Für Die Reine und Angewandte Mathematik (Crelle’s Journal), 94 (1883), 162-170.
  • A. C. Çöken, Ü. Çiftci, and C. Ekici, On parallel timelike ruled surfaces with timelike rulings, Kuwait Journal of Science & Engineering, 35 (2008), 21-31.
  • L.P. Eisenhart, A Treatise on the Diğ erential Geometry of Curves and Surfaces, Boston: New York [etc.] Ginn and Company, 1909.
  • A. Görgülü, A. C. Çöken, The Dupin indicatrix for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 7(3), (1994), 221-225.
  • A. Görgülü, A. C. Çöken, The Euler theorem for parallel pseudo-Euclidean hypersurfaces in pseudo-Euclidean space En+1, Journ. Inst. Math. and Comp. Sci. (Math. Series) 6(2), (1993), 165.
  • H. H. Hacısaliho¼glu, Diferensiyel Geometri, ·Inönü Ünv. Fen Edebiyat Fak. Yayınları, No.2, S. Kızıltu¼g, Ö. Tarakcı, Y. Yaylı, On the Curves Lying on Parallel Surfaces in the Euclidean space E3, Journal of Advanced Research in Dynamical and Control Systems, 5(3), (2013), 35.
  • E. Kreyszig, Diğ erential Geometry, Dover Publications, Inc.,1991.
  • ¸S. Nizamoglu, Surfaces Réglées Parallèles, Ege Üniv. Fen Fak. Derg., 9A, (1986), 37-48.
  • B. O’Neill, Elementary Diğ erential Geometry, Acedemic Press, Inc., 1966.
  • M. Önder, S. Kızıltu¼g, Bertrand and Mannheim Partner D-Curves on Parallel Surfaces in Minkowski 3-Space, Internatıonal journal of Geometry, 1(2), (2012), 34-45.
  • K. R. Park, G. I. Kim, Oğ sets of ruled surfaces, J. Korean Computer Graphics Society, 4, (1998), 69-75.
  • A. Sabuncuo¼glu, Diferensiyel Geometri, Nobel Yayın Da¼gıtım, 2001.
  • D. W. Yoon, Some properties of parallel surfaces in Euclidean 3-spaces, Honam Mathematical J., 30(4), (2008), 637-644.
  • Dirk J. Struik, Lectures on Classical Diğ erential Geometry, Dover Publications, Inc., 1961.
  • Current address : ÜM ·IT Z·IYA SAVCI: Celal Bayar University, Department of Mathematics Education , 45900, Manisa, TURKEY
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Research Article
Yazarlar

Ziya Ümit Savcı Bu kişi benim

Ali Görgülü Bu kişi benim

Cumali Ekici Bu kişi benim

Yayımlanma Tarihi 1 Şubat 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 66 Sayı: 1

Kaynak Göster

APA Savcı, Z. Ü., Görgülü, A., & Ekici, C. (2017). ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 66(1), 187-198. https://doi.org/10.1501/Commua1_0000000788
AMA Savcı ZÜ, Görgülü A, Ekici C. ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. Şubat 2017;66(1):187-198. doi:10.1501/Commua1_0000000788
Chicago Savcı, Ziya Ümit, Ali Görgülü, ve Cumali Ekici. “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66, sy. 1 (Şubat 2017): 187-98. https://doi.org/10.1501/Commua1_0000000788.
EndNote Savcı ZÜ, Görgülü A, Ekici C (01 Şubat 2017) ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66 1 187–198.
IEEE Z. Ü. Savcı, A. Görgülü, ve C. Ekici, “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., c. 66, sy. 1, ss. 187–198, 2017, doi: 10.1501/Commua1_0000000788.
ISNAD Savcı, Ziya Ümit vd. “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 66/1 (Şubat 2017), 187-198. https://doi.org/10.1501/Commua1_0000000788.
JAMA Savcı ZÜ, Görgülü A, Ekici C. ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66:187–198.
MLA Savcı, Ziya Ümit vd. “ON MEUSNIER THEOREM FOR PARALLEL SURFACES”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, c. 66, sy. 1, 2017, ss. 187-98, doi:10.1501/Commua1_0000000788.
Vancouver Savcı ZÜ, Görgülü A, Ekici C. ON MEUSNIER THEOREM FOR PARALLEL SURFACES. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2017;66(1):187-98.

Cited By

Offset surface pencil with a common asymptotic curve
International Journal of Geometric Methods in Modern Physics
https://doi.org/10.1142/S0219887818501955

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.