Year 2020,
Volume: 69 Issue: 2, 1389 - 1404, 31.12.2020
Ahu Açıkgöz
,
Ferhat Esenbel
References
- Al-shami, T.M., Kocinac, Lj.D.R., The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2) (2019), 149-162.
- Aras, C.G., Sonmez, A., Çakalli, H., An approach to soft functions, J. Math. Anal., 8 2 (2017), 129-138.
- Aras, C.G., Ozturk, T.Y., Bayramov, S., Separation axioms on neutrosophic soft topological spaces, Turk. J. Math., 43 (2019), 498-510.
- Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
- Bayramov, S., Gunduz, C., On intuitionistic fuzzy soft topological spaces, TWMS J. Pure Appl. Math., 5 (2014), 66-79.
- Bayramov, S., Gunduz, C., A new approach to separability and compactness in soft topological spaces, TWMS J Pure Appl. Math., 9 (2018), 82-93.
- Bera, T., Mahapatra, N.K., On neutrosophic soft function, Annals of Fuzzy Mathematics and Informatics, 12 (1) (July 2016), 101-119.
- Bera, T., Mahapatra, N.K., Introduction to neutrosophic soft topological space, Opsearch, 54 (2017), 841-867.
- Cagman, N., Karatas, S., Enginoglu, S., Soft topology, Comput Math. Appl., 62 (2011), 351-358.
- Çakalli, H., Das, P., Fuzzy compactness via summability, Appl. Math. Lett., 22 (11) (2009), 1665-1669.
- Coskun, A.E., Aras, C.G., Cakalli, H., Sonmez, A., Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi: 10.1063/1.4959713.
- Deli, I., Broumi, S., Neutrosophic soft relations and some Properties, Ann. Fuzzy Math. Inform, 9 (2015), 169-182.
- Gunduz, C., Bayramov, S., On the Tietze extension theorem in soft topological spaces, Proceedings of the Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan, 43 (2017), 105-115.
- Hussain, S., On some properties of intuitionistic fuzzy soft boundary, Commun. Fac. Sci. Univ. Ank. Series A1, 69 (2) (2020), 39-50.
- Maji, P.K., Neutrosophic soft set, Ann. Fuzzy Math. Inform, 5 (2013), 157-168.
- Molodtsov, D., Soft set theory-first results, Comput Math. Appl., 37 (1999), 19-31.
- Pei, D., Miao, D., From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE 2 (2005), 617-621.
Salma, A.A., Alblowi, S.A., Neutrosophic set and neutrosophic topological spaces, IOSR J. Math., 3 (2012), 31-35.
- Shabir, M., Naz, M., On soft topological spaces, Comput Math. Appl., 61 (2011), 1786-1799.
- Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287-297.
- Xiao, Z., Chen, L., Zhong, B., Ye, S., Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, 2 (2005), 1104-1106.
An approach to pre-separation axioms in neutrosophic soft topological spaces
Year 2020,
Volume: 69 Issue: 2, 1389 - 1404, 31.12.2020
Ahu Açıkgöz
,
Ferhat Esenbel
Abstract
In this study, we introduce the concept of neutrosophic soft pre-open (neutrosophic
soft pre-closed) sets and pre-separation axioms in neutrosophic soft topological spaces. In
particular, the relationship between these separation axioms are investigated. Also, we give
a new definition for neutrosophic soft topological subspace and define neutrosophic soft pre
irresolute soft and neutrosophic pre irresolute open soft functions.
References
- Al-shami, T.M., Kocinac, Lj.D.R., The equivalence between the enriched and extended soft topologies, Appl. Comput. Math., 18 (2) (2019), 149-162.
- Aras, C.G., Sonmez, A., Çakalli, H., An approach to soft functions, J. Math. Anal., 8 2 (2017), 129-138.
- Aras, C.G., Ozturk, T.Y., Bayramov, S., Separation axioms on neutrosophic soft topological spaces, Turk. J. Math., 43 (2019), 498-510.
- Atanassov, K., Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87-96.
- Bayramov, S., Gunduz, C., On intuitionistic fuzzy soft topological spaces, TWMS J. Pure Appl. Math., 5 (2014), 66-79.
- Bayramov, S., Gunduz, C., A new approach to separability and compactness in soft topological spaces, TWMS J Pure Appl. Math., 9 (2018), 82-93.
- Bera, T., Mahapatra, N.K., On neutrosophic soft function, Annals of Fuzzy Mathematics and Informatics, 12 (1) (July 2016), 101-119.
- Bera, T., Mahapatra, N.K., Introduction to neutrosophic soft topological space, Opsearch, 54 (2017), 841-867.
- Cagman, N., Karatas, S., Enginoglu, S., Soft topology, Comput Math. Appl., 62 (2011), 351-358.
- Çakalli, H., Das, P., Fuzzy compactness via summability, Appl. Math. Lett., 22 (11) (2009), 1665-1669.
- Coskun, A.E., Aras, C.G., Cakalli, H., Sonmez, A., Soft matrices on soft multisets in an optimal decision process, AIP Conference Proceedings, 1759, 1, 020099 (2016); doi: 10.1063/1.4959713.
- Deli, I., Broumi, S., Neutrosophic soft relations and some Properties, Ann. Fuzzy Math. Inform, 9 (2015), 169-182.
- Gunduz, C., Bayramov, S., On the Tietze extension theorem in soft topological spaces, Proceedings of the Institute of Mathematics and Mechanics of the National Academy of Sciences of Azerbaijan, 43 (2017), 105-115.
- Hussain, S., On some properties of intuitionistic fuzzy soft boundary, Commun. Fac. Sci. Univ. Ank. Series A1, 69 (2) (2020), 39-50.
- Maji, P.K., Neutrosophic soft set, Ann. Fuzzy Math. Inform, 5 (2013), 157-168.
- Molodtsov, D., Soft set theory-first results, Comput Math. Appl., 37 (1999), 19-31.
- Pei, D., Miao, D., From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T. Y. Lin, R. R. Yager, B. Zhang (Eds.), Proceedings of Granular Computing, in: IEEE 2 (2005), 617-621.
Salma, A.A., Alblowi, S.A., Neutrosophic set and neutrosophic topological spaces, IOSR J. Math., 3 (2012), 31-35.
- Shabir, M., Naz, M., On soft topological spaces, Comput Math. Appl., 61 (2011), 1786-1799.
- Smarandache, F., Neutrosophic set, a generalisation of the intuitionistic fuzzy sets, Int. J. Pure Appl. Math., 24 (2005), 287-297.
- Xiao, Z., Chen, L., Zhong, B., Ye, S., Recognition for soft information based on the theory of soft sets, in: J. Chen (Ed.), Proceedings of ICSSSM-05, 2 (2005), 1104-1106.