Research Article
BibTex RIS Cite

On the extended Wright hypergeometric matrix function and its properties

Year 2023, Volume: 72 Issue: 3, 606 - 617, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1147745

Abstract

Recently, Bakhet et al. [9] presented the Wright hypergeometric matrix function $_{2}R_{1}^{(\tau )}(A,B;C;z)$ and derived several properties. Abdalla [6] has since applied fractional operators to this function. In this paper, with the help of the generalized Pochhammer matrix symbol $(A;B)_{n}$ and the generalized beta matrix function $\mathcal{B}(P,Q;\mathbb{X})$, we introduce and study an extended form of the Wright hypergeometric matrix function, $_{2}R_{1}^{(\tau )}((A,\mathbb{A}),B;C;z;\mathbb{X}).$ We establish several potentially useful results for this extended form, such as integral representations and fractional derivatives. We also derive some properties of the corresponding incomplete extended Wright hypergeometric matrix function.

References

  • Abd-Elmageed, H., Hidan, M., Abdalla, M., Investigation for the k-analogue of $\tau$-Gauss hypergeometric matrix functions and associated fractional calculus, Linear and Multilinear Algebra, (2022), 1-14. https://doi.org/10.1080/03081087.2022.2161459
  • Abdalla, M., On the incomplete hypergeometric matrix functions, Ramanujan J., 43 (2017), 663-678. https://doi.org/10.1007/s11139-016-9795-z
  • Abdalla, A., Akel, M., Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal and Fractional, 6(6) (2022), 305. https://doi.org/10.3390/ fractalfract6060305
  • Abdalla, M., Bakhet, A., Extended Gauss hypergeometric matrix functions, Iran J Sci Technol Trans Sci., 42 (2018), 1465-1470. https://doi.org/10.1007/s40995-017-0183-3
  • Abdalla, M., Bakhet, A., Extension of beta matrix function, Asian J Math Comput Res., 9 (2016), 253-264.
  • Abdalla, M., Fractional operators for the Wright hypergeometric matrix functions, Advances in Difference Equations, (2020), 246. https://doi.org/10.1186/s13662-020-02704-y
  • Abul-Dahab, M. A., Bakhet, A. K., A certain generalized gamma matrix functions and their properties, J. Ana. Num. Theor., 3(1) (2015), 63-68. https://dx.doi.org/10.12785/jant/030110
  • Bakhet, A., Hyder, A. A., Almoneef, A. A., Niyaz, M., Soliman, A. H., On new matrix version extension of the incomplete Wright hypergeometric functions and their fractional calculus, Mathematics, 10(22) (2022), 4371. https://doi.org/10.3390/math10224371
  • Bakhet, A., Jiao, Y., He, F., On the Wright hypergeomertric matrix functions and their fractional calculus, Integral Transforms Spec. Funct., 30 (2019), 138-156. https://doi.org/10.1080/10652469.2018.1543669
  • Dwivedi, R., Sanjhira, R., On the matrix function $_{p}R_{q}(A;B;z)$ and its fractional calculus properties, Communications in Mathematics, 31(1) (2023), 43-56. https://doi.org/10.46298/cm.10205
  • Hidan, M., Akel, M., Abd-Elmageed, H., Abdalla, M., Solution of fractional kinetic equations involving extended $(k,\tau)$-Gauss hypergeometric matrix functions, AIMS Math., 7(8) (2022), 14474-14491. https://doi.org/10.3934/math.2022798
  • Jodar, L., Cortes, J. C., Some properties of gamma and beta matrix functions, Appl. Math. Lett., 11 (1998), 89-93. https://doi.org/10.1016/S0893-9659(97)00139-0
  • Jodar, L., Cortes, J. C., On the hypergeometric matrix functions, J. Compute. Appl. Math., 99 (1998), 205-217. https://doi.org/10.1016/S0377-0427(98)00158-7
  • Khammash, G. S., Agarwal, P., Choi, J., Extended k-gamma and k-beta functions of matrix arguments, Mathematics, 8 (2020), 1715. https://doi.org/10.3390/math8101715
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, (2006), 204.
  • Özarslan, M. A., Ustaoğlu, C., Incomplete Caputo fractional derivative operators, Adv. Differ. Equ., (2018), 209. https://doi.org/10.1186/s13662-018-1656-1
  • Özarslan, M. A., Ustaoğlu, C., Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, Mathematics, 7 (2018), 483. https://doi.org/10.3390/math7050483
  • Verma, A., On the incomplete Srivastava‘s triple hypergeometric matrix functions, Quaest Math., (2020), 1-24. https://doi.org/10.2989/16073606.2020.1753123
  • Verma, A., Yadav, S., On the incomplete second Appell hypergeometric matrix functions, Linear Multilinear Algebra, (2019). https://doi.org/10.1080/03081087.2019.1640178
  • Verma, A., Dwivedi, R., Sahai, V., Some extended hypergeometric matrix functions and their fractional calculus, (2020), arXiv:2011.00772v1. https://doi.org/10.48550/arXiv.2011.00772
  • Zou, C., Yu, M., Bakhet, A., He, F., On the matrix versions of incomplete extended gamma and beta functions and their applications for the incomplete Bessel, Complexity, (2020). https://doi.org/10.1155/2021/5586021
Year 2023, Volume: 72 Issue: 3, 606 - 617, 30.09.2023
https://doi.org/10.31801/cfsuasmas.1147745

Abstract

References

  • Abd-Elmageed, H., Hidan, M., Abdalla, M., Investigation for the k-analogue of $\tau$-Gauss hypergeometric matrix functions and associated fractional calculus, Linear and Multilinear Algebra, (2022), 1-14. https://doi.org/10.1080/03081087.2022.2161459
  • Abdalla, M., On the incomplete hypergeometric matrix functions, Ramanujan J., 43 (2017), 663-678. https://doi.org/10.1007/s11139-016-9795-z
  • Abdalla, A., Akel, M., Contribution of using Hadamard fractional integral operator via Mellin integral transform for solving certain fractional kinetic matrix equations, Fractal and Fractional, 6(6) (2022), 305. https://doi.org/10.3390/ fractalfract6060305
  • Abdalla, M., Bakhet, A., Extended Gauss hypergeometric matrix functions, Iran J Sci Technol Trans Sci., 42 (2018), 1465-1470. https://doi.org/10.1007/s40995-017-0183-3
  • Abdalla, M., Bakhet, A., Extension of beta matrix function, Asian J Math Comput Res., 9 (2016), 253-264.
  • Abdalla, M., Fractional operators for the Wright hypergeometric matrix functions, Advances in Difference Equations, (2020), 246. https://doi.org/10.1186/s13662-020-02704-y
  • Abul-Dahab, M. A., Bakhet, A. K., A certain generalized gamma matrix functions and their properties, J. Ana. Num. Theor., 3(1) (2015), 63-68. https://dx.doi.org/10.12785/jant/030110
  • Bakhet, A., Hyder, A. A., Almoneef, A. A., Niyaz, M., Soliman, A. H., On new matrix version extension of the incomplete Wright hypergeometric functions and their fractional calculus, Mathematics, 10(22) (2022), 4371. https://doi.org/10.3390/math10224371
  • Bakhet, A., Jiao, Y., He, F., On the Wright hypergeomertric matrix functions and their fractional calculus, Integral Transforms Spec. Funct., 30 (2019), 138-156. https://doi.org/10.1080/10652469.2018.1543669
  • Dwivedi, R., Sanjhira, R., On the matrix function $_{p}R_{q}(A;B;z)$ and its fractional calculus properties, Communications in Mathematics, 31(1) (2023), 43-56. https://doi.org/10.46298/cm.10205
  • Hidan, M., Akel, M., Abd-Elmageed, H., Abdalla, M., Solution of fractional kinetic equations involving extended $(k,\tau)$-Gauss hypergeometric matrix functions, AIMS Math., 7(8) (2022), 14474-14491. https://doi.org/10.3934/math.2022798
  • Jodar, L., Cortes, J. C., Some properties of gamma and beta matrix functions, Appl. Math. Lett., 11 (1998), 89-93. https://doi.org/10.1016/S0893-9659(97)00139-0
  • Jodar, L., Cortes, J. C., On the hypergeometric matrix functions, J. Compute. Appl. Math., 99 (1998), 205-217. https://doi.org/10.1016/S0377-0427(98)00158-7
  • Khammash, G. S., Agarwal, P., Choi, J., Extended k-gamma and k-beta functions of matrix arguments, Mathematics, 8 (2020), 1715. https://doi.org/10.3390/math8101715
  • Kilbas, A. A., Srivastava, H. M. and Trujillo, J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, (2006), 204.
  • Özarslan, M. A., Ustaoğlu, C., Incomplete Caputo fractional derivative operators, Adv. Differ. Equ., (2018), 209. https://doi.org/10.1186/s13662-018-1656-1
  • Özarslan, M. A., Ustaoğlu, C., Some incomplete hypergeometric functions and incomplete Riemann-Liouville fractional integral operators, Mathematics, 7 (2018), 483. https://doi.org/10.3390/math7050483
  • Verma, A., On the incomplete Srivastava‘s triple hypergeometric matrix functions, Quaest Math., (2020), 1-24. https://doi.org/10.2989/16073606.2020.1753123
  • Verma, A., Yadav, S., On the incomplete second Appell hypergeometric matrix functions, Linear Multilinear Algebra, (2019). https://doi.org/10.1080/03081087.2019.1640178
  • Verma, A., Dwivedi, R., Sahai, V., Some extended hypergeometric matrix functions and their fractional calculus, (2020), arXiv:2011.00772v1. https://doi.org/10.48550/arXiv.2011.00772
  • Zou, C., Yu, M., Bakhet, A., He, F., On the matrix versions of incomplete extended gamma and beta functions and their applications for the incomplete Bessel, Complexity, (2020). https://doi.org/10.1155/2021/5586021
There are 21 citations in total.

Details

Primary Language English
Subjects Mathematical Sciences
Journal Section Research Articles
Authors

Halil Gezer 0000-0002-1248-989X

Cem Kaanoglu 0000-0001-7733-041X

Publication Date September 30, 2023
Submission Date July 23, 2022
Acceptance Date March 27, 2023
Published in Issue Year 2023 Volume: 72 Issue: 3

Cite

APA Gezer, H., & Kaanoglu, C. (2023). On the extended Wright hypergeometric matrix function and its properties. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(3), 606-617. https://doi.org/10.31801/cfsuasmas.1147745
AMA Gezer H, Kaanoglu C. On the extended Wright hypergeometric matrix function and its properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2023;72(3):606-617. doi:10.31801/cfsuasmas.1147745
Chicago Gezer, Halil, and Cem Kaanoglu. “On the Extended Wright Hypergeometric Matrix Function and Its Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72, no. 3 (September 2023): 606-17. https://doi.org/10.31801/cfsuasmas.1147745.
EndNote Gezer H, Kaanoglu C (September 1, 2023) On the extended Wright hypergeometric matrix function and its properties. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72 3 606–617.
IEEE H. Gezer and C. Kaanoglu, “On the extended Wright hypergeometric matrix function and its properties”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 72, no. 3, pp. 606–617, 2023, doi: 10.31801/cfsuasmas.1147745.
ISNAD Gezer, Halil - Kaanoglu, Cem. “On the Extended Wright Hypergeometric Matrix Function and Its Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 72/3 (September 2023), 606-617. https://doi.org/10.31801/cfsuasmas.1147745.
JAMA Gezer H, Kaanoglu C. On the extended Wright hypergeometric matrix function and its properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72:606–617.
MLA Gezer, Halil and Cem Kaanoglu. “On the Extended Wright Hypergeometric Matrix Function and Its Properties”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 72, no. 3, 2023, pp. 606-17, doi:10.31801/cfsuasmas.1147745.
Vancouver Gezer H, Kaanoglu C. On the extended Wright hypergeometric matrix function and its properties. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2023;72(3):606-17.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.