Research Article
BibTex RIS Cite

On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator

Year 2024, Volume: 73 Issue: 3, 664 - 673, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1346024

Abstract

In this paper, we define a new class of bi-univalent functions of complex order $∑_{q}ⁿ(τ,ζ;φ)$ which is defined by subordination in the open unit disc $D$. By using $D_{q}ⁿϜ(ς)$ operator. Furthermore, using the Faber polynomial expansions, we get upper bounds for the coefficients of function belonging to this class.

References

  • Adegani, E. A., Bulut, S., Zireh, A., Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55(2) (2018), 405-413. https://doi.org/10.4134/BKMS.b170051
  • Airault, H., Symmetric sums associated to the factorization of Grunsky coefficients, in groups and symmetries, CRM Proc. Lecture Notes Amer. Math. Soc. Providence, RI, 47 (2007), 3-16.
  • Airault, H., Bouali, A., Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(3) (2006), 179-222. DOI:10.1016/j.bulsci.2005.10.002
  • Airault, H., Ren, J., An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126(5) (2002), 343-367. https://doi.org/10.1016/S0007-4497(02)01115-6
  • Ali, R. M, Lee, S. K., Ravichandran, V., Supramanian, S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(3) (2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
  • Annby, M. H., Mansour, Z. S., q−Fractional Calculus Equations, Lecture Notes in Mathematics., Vol. 2056, Springer, Berlin, 2012.
  • Aouf, M. K., Madian, S. M., Coefficient bounds for bi-univalent classes defined by Bazilevic functions and convolution, Boletln de la Sociedad Matematica Mexicana, 26 (2020), 1045-1062. https://doi.org/10.1007/s40590-020-00304-0
  • Aouf, M. K., Mostafa, A. O., Subordination results for analytic functions associated with fractional q−calculus operators with complex order, Afr. Mat., 31 (2020), 1387–1396. https://doi.org/10.1007/s13370-020-00803-3
  • Aouf, M. K., Mostafa, A. O., Some subordinating results for classes of functions defined by S˘al˘agean type q−derivative operator, Filomat., 34(7) (2020), 2283–2292. https://doi.org/10.2298/FIL2007283A
  • Aouf, M. K., Mostafa, A. O., Elmorsy, R. E., Certain subclasses of analytic functions with varying arguments associated with q−difference operator, Afrika Math., 32 (2021), 621-630. https://doi.org/10.1007/s13370-020-00849-3
  • Aral, A., Gupta, V., Agarwal, R. P., Applications of q−Calculus in Operator Theory, Springer, New York, 2013.
  • Bulboaca, T., Differential Subordinations and Superordinations, New Results, Cluj-Napoca, House of Scientific Book Publ., 2005.
  • Bulut, S., Magesh, N., Balaji, K. V., Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, J. Class. Anal., 11(1) (2017), 83-89. http://dx.doi.org/10.7153/jca-11-06
  • Çağlar, M., Palpandy, G., Deniz, E., Unpredictability of initial coefficient bounds for m-fold symmetric bi-univalent starlike and convex functions defined by subordinations, Afr. Mat., 29 (2018), 793–802. https://doi.org/10.1007/s13370-018-0578-0
  • Deniz, E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(1) (2013), 49-60. http://dx.doi.org/10.7153/jca-02-05
  • Deniz, E., Jahangiri, J. M., Kına, S. K., Hamidi, S. G., Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Ineq., 12(3) (2018), 645–653. http://dx.doi.org/10.7153/jmi-2018-12-49
  • Faber, G., Uber polynomische Entwickelungen, Math. Ann., 57(3) (1903), 389-408.
  • Frasin, B. A., Murugusundaramoorthy, G., A subordination results for a class of analytic functions defined by q−differential operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 53-64. DOI: 10.2478/aupcsm-2020-0005
  • Govindaraj, M., Sivasubramanian, S., On a class of analytic function related to conic domains involving q−calculus, Anal. Math., 43(3) (2017), 475–487. DOI: 10.1007/s10476-017-0206-5
  • Hamidi, S. G., Jahangiri, J. M., Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119. http://bims.ims.ir/
  • Jackson, F. H., On q−functions and a certain difference operator, Trans. R. Soc. Edinb., 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751
  • Jahangiri, J. M., Hamidi, S. G., Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., 2013, Art. ID 190560. http://dx.doi.org/10.1155/2013/190560
  • Kazımoğlu, S., Deniz, E., Fekete-Szego problem for generalized bi- subordinate functions of complex order, Hacet. J. Math. Stat., 49(5) (2020), 1695-1705. DOI : 10.15672/hujms.557072
  • Madian, S. M., Some properties for certain class of bi-univalent functions defined by q−Cataş operator with bounded boundary rotation, AIMS Mathematics, 7 (2022), 903-914. 10.3934/math.2022053.
  • Miller, S., Mocanu, S., Differential Subordinations, Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., (255), New York, Marcel Dekker Inc., 2000.
  • Mostafa, A. O., Aouf, M. K., Elmorsy, R. E., Coefficient bounds for general class of bi-univalent functions of complex order associated with q−Salagean operator and Chebyshev polynomials, Electric J. Math. Anal. Appl., 8(2) (2020), 251-260. http://mathfrac.org/Journals/EJMAA/
  • Mostafa, A. O., Saleh, Z. M., Coefficient bounds for a class of bi-univalent functions defined by Chebyshev polynomials, Int. J. Open. Prob. Compl. Anal., 13(3) (2021), 19-28. http://www.icsrs.org/Volumes/ijopca/vol.13/3.2
  • Nehari, Z., Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
  • Salagean, G., Subclasses of Univalent Functions, Lecture Note in Math., Springer-Verlag 1013, 1983, 362-372.
  • Srivastava, H. M., Aouf, M. K., Mostafa, A. O., Some properties of analytic functions associated with fractional q−calculus operators, Miskolc Mathematical Notes., 20(2) (2019), 1245–1260. DOI: 10.18514/MMN.2019.3046
  • Srivastava, H. M., Eker, S. S., Ali, R. M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(8) (2015), 1839-1845. http://www.pmf.ni.ac.rs/filomat
  • Srivastava, H. M., Murugusundaramoorthy, G., El-Deeb, S. M., Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the boreal distribution of the Mittag-Leffler type, Journal of Nonlinear and Variational Analysis, 5(1) (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07
  • Todorov, P. G., On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162(1) (1991), 268-276. https://doi.org/10.1016/0022-247X(91)90193-4.
  • Vijaya, K., Kasthuri, M., Murugusundaramoorthy, G., Coefficient bounds for subclasses of bi-univalent functions defined by the S˘al˘agean derivative operator, Boletin de la Asociaciton, Matematica Venezolana, 21(2) (2014), 1-9.
  • Yalçın, S., Altınkaya, Ş., Murugusundaramoorthy, G., Vijaya, K., Hankel inequalities for a subclass of Bi-Univalent functions based on Salagean type q−difference operator, Journal of Mathematical and Fundamental Sciences, 52(2) (2020), 189–201. https://doi.org/10.5614/j.math.fund.sci.2020.52.2.4
Year 2024, Volume: 73 Issue: 3, 664 - 673, 27.09.2024
https://doi.org/10.31801/cfsuasmas.1346024

Abstract

References

  • Adegani, E. A., Bulut, S., Zireh, A., Coefficient estimates for a subclass of analytic bi-univalent functions, Bull. Korean Math. Soc., 55(2) (2018), 405-413. https://doi.org/10.4134/BKMS.b170051
  • Airault, H., Symmetric sums associated to the factorization of Grunsky coefficients, in groups and symmetries, CRM Proc. Lecture Notes Amer. Math. Soc. Providence, RI, 47 (2007), 3-16.
  • Airault, H., Bouali, A., Differential calculus on the Faber polynomials, Bull. Sci. Math., 130(3) (2006), 179-222. DOI:10.1016/j.bulsci.2005.10.002
  • Airault, H., Ren, J., An algebra of differential operators and generating functions on the set of univalent functions, Bull. Sci. Math., 126(5) (2002), 343-367. https://doi.org/10.1016/S0007-4497(02)01115-6
  • Ali, R. M, Lee, S. K., Ravichandran, V., Supramanian, S., Coefficient estimates for biunivalent Ma-Minda starlike and convex functions, Appl. Math. Lett., 25(3) (2012), 344-351. https://doi.org/10.1016/j.aml.2011.09.012
  • Annby, M. H., Mansour, Z. S., q−Fractional Calculus Equations, Lecture Notes in Mathematics., Vol. 2056, Springer, Berlin, 2012.
  • Aouf, M. K., Madian, S. M., Coefficient bounds for bi-univalent classes defined by Bazilevic functions and convolution, Boletln de la Sociedad Matematica Mexicana, 26 (2020), 1045-1062. https://doi.org/10.1007/s40590-020-00304-0
  • Aouf, M. K., Mostafa, A. O., Subordination results for analytic functions associated with fractional q−calculus operators with complex order, Afr. Mat., 31 (2020), 1387–1396. https://doi.org/10.1007/s13370-020-00803-3
  • Aouf, M. K., Mostafa, A. O., Some subordinating results for classes of functions defined by S˘al˘agean type q−derivative operator, Filomat., 34(7) (2020), 2283–2292. https://doi.org/10.2298/FIL2007283A
  • Aouf, M. K., Mostafa, A. O., Elmorsy, R. E., Certain subclasses of analytic functions with varying arguments associated with q−difference operator, Afrika Math., 32 (2021), 621-630. https://doi.org/10.1007/s13370-020-00849-3
  • Aral, A., Gupta, V., Agarwal, R. P., Applications of q−Calculus in Operator Theory, Springer, New York, 2013.
  • Bulboaca, T., Differential Subordinations and Superordinations, New Results, Cluj-Napoca, House of Scientific Book Publ., 2005.
  • Bulut, S., Magesh, N., Balaji, K. V., Initial bounds for analytic and bi-univalent functions by means of Chebyshev polynomials, J. Class. Anal., 11(1) (2017), 83-89. http://dx.doi.org/10.7153/jca-11-06
  • Çağlar, M., Palpandy, G., Deniz, E., Unpredictability of initial coefficient bounds for m-fold symmetric bi-univalent starlike and convex functions defined by subordinations, Afr. Mat., 29 (2018), 793–802. https://doi.org/10.1007/s13370-018-0578-0
  • Deniz, E., Certain subclasses of bi-univalent functions satisfying subordinate conditions, J. Class. Anal., 2(1) (2013), 49-60. http://dx.doi.org/10.7153/jca-02-05
  • Deniz, E., Jahangiri, J. M., Kına, S. K., Hamidi, S. G., Faber polynomial coefficients for generalized bi-subordinate functions of complex order, J. Math. Ineq., 12(3) (2018), 645–653. http://dx.doi.org/10.7153/jmi-2018-12-49
  • Faber, G., Uber polynomische Entwickelungen, Math. Ann., 57(3) (1903), 389-408.
  • Frasin, B. A., Murugusundaramoorthy, G., A subordination results for a class of analytic functions defined by q−differential operator, Ann. Univ. Paedagog. Crac. Stud. Math., 19 (2020), 53-64. DOI: 10.2478/aupcsm-2020-0005
  • Govindaraj, M., Sivasubramanian, S., On a class of analytic function related to conic domains involving q−calculus, Anal. Math., 43(3) (2017), 475–487. DOI: 10.1007/s10476-017-0206-5
  • Hamidi, S. G., Jahangiri, J. M., Faber polynomial coefficient estimates for bi-univalent functions defined by subordinations, Bull. Iran. Math. Soc., 41 (2015), 1103–1119. http://bims.ims.ir/
  • Jackson, F. H., On q−functions and a certain difference operator, Trans. R. Soc. Edinb., 46 (1908), 253–281. https://doi.org/10.1017/S0080456800002751
  • Jahangiri, J. M., Hamidi, S. G., Coefficient estimates for certain classes of biunivalent functions, Int. J. Math. Math. Sci., 2013, Art. ID 190560. http://dx.doi.org/10.1155/2013/190560
  • Kazımoğlu, S., Deniz, E., Fekete-Szego problem for generalized bi- subordinate functions of complex order, Hacet. J. Math. Stat., 49(5) (2020), 1695-1705. DOI : 10.15672/hujms.557072
  • Madian, S. M., Some properties for certain class of bi-univalent functions defined by q−Cataş operator with bounded boundary rotation, AIMS Mathematics, 7 (2022), 903-914. 10.3934/math.2022053.
  • Miller, S., Mocanu, S., Differential Subordinations, Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math., (255), New York, Marcel Dekker Inc., 2000.
  • Mostafa, A. O., Aouf, M. K., Elmorsy, R. E., Coefficient bounds for general class of bi-univalent functions of complex order associated with q−Salagean operator and Chebyshev polynomials, Electric J. Math. Anal. Appl., 8(2) (2020), 251-260. http://mathfrac.org/Journals/EJMAA/
  • Mostafa, A. O., Saleh, Z. M., Coefficient bounds for a class of bi-univalent functions defined by Chebyshev polynomials, Int. J. Open. Prob. Compl. Anal., 13(3) (2021), 19-28. http://www.icsrs.org/Volumes/ijopca/vol.13/3.2
  • Nehari, Z., Conformal Mapping, McGraw-Hill Book Co., Inc., New York, Toronto, London, 1952.
  • Salagean, G., Subclasses of Univalent Functions, Lecture Note in Math., Springer-Verlag 1013, 1983, 362-372.
  • Srivastava, H. M., Aouf, M. K., Mostafa, A. O., Some properties of analytic functions associated with fractional q−calculus operators, Miskolc Mathematical Notes., 20(2) (2019), 1245–1260. DOI: 10.18514/MMN.2019.3046
  • Srivastava, H. M., Eker, S. S., Ali, R. M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat, 29(8) (2015), 1839-1845. http://www.pmf.ni.ac.rs/filomat
  • Srivastava, H. M., Murugusundaramoorthy, G., El-Deeb, S. M., Faber polynomial coefficient estimates of bi-close-to-convex functions connected with the boreal distribution of the Mittag-Leffler type, Journal of Nonlinear and Variational Analysis, 5(1) (2021), 103–118. https://doi.org/10.23952/jnva.5.2021.1.07
  • Todorov, P. G., On the Faber polynomials of the univalent functions of class, J. Math. Anal. Appl., 162(1) (1991), 268-276. https://doi.org/10.1016/0022-247X(91)90193-4.
  • Vijaya, K., Kasthuri, M., Murugusundaramoorthy, G., Coefficient bounds for subclasses of bi-univalent functions defined by the S˘al˘agean derivative operator, Boletin de la Asociaciton, Matematica Venezolana, 21(2) (2014), 1-9.
  • Yalçın, S., Altınkaya, Ş., Murugusundaramoorthy, G., Vijaya, K., Hankel inequalities for a subclass of Bi-Univalent functions based on Salagean type q−difference operator, Journal of Mathematical and Fundamental Sciences, 52(2) (2020), 189–201. https://doi.org/10.5614/j.math.fund.sci.2020.52.2.4
There are 35 citations in total.

Details

Primary Language English
Subjects Real and Complex Functions (Incl. Several Variables)
Journal Section Research Articles
Authors

Zeinab Nsar 0009-0009-1202-7714

A. O. Mostafa 0000-0002-3911-0990

Samar Mohamed 0000-0001-7490-9901

Publication Date September 27, 2024
Submission Date August 18, 2023
Acceptance Date April 30, 2024
Published in Issue Year 2024 Volume: 73 Issue: 3

Cite

APA Nsar, Z., Mostafa, A. O., & Mohamed, S. (2024). On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 73(3), 664-673. https://doi.org/10.31801/cfsuasmas.1346024
AMA Nsar Z, Mostafa AO, Mohamed S. On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. September 2024;73(3):664-673. doi:10.31801/cfsuasmas.1346024
Chicago Nsar, Zeinab, A. O. Mostafa, and Samar Mohamed. “On a Class of Bi-Univalent Functions of Complex Order Related to Faber Polynomials and Q-Sălăgean Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73, no. 3 (September 2024): 664-73. https://doi.org/10.31801/cfsuasmas.1346024.
EndNote Nsar Z, Mostafa AO, Mohamed S (September 1, 2024) On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73 3 664–673.
IEEE Z. Nsar, A. O. Mostafa, and S. Mohamed, “On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., vol. 73, no. 3, pp. 664–673, 2024, doi: 10.31801/cfsuasmas.1346024.
ISNAD Nsar, Zeinab et al. “On a Class of Bi-Univalent Functions of Complex Order Related to Faber Polynomials and Q-Sălăgean Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics 73/3 (September 2024), 664-673. https://doi.org/10.31801/cfsuasmas.1346024.
JAMA Nsar Z, Mostafa AO, Mohamed S. On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73:664–673.
MLA Nsar, Zeinab et al. “On a Class of Bi-Univalent Functions of Complex Order Related to Faber Polynomials and Q-Sălăgean Operator”. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, vol. 73, no. 3, 2024, pp. 664-73, doi:10.31801/cfsuasmas.1346024.
Vancouver Nsar Z, Mostafa AO, Mohamed S. On a class of bi-univalent functions of complex order related to Faber polynomials and q-Sălăgean operator. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 2024;73(3):664-73.

Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.