Bias corrected maximum likelihood estimators for the parameters of the generalized normal distribution
Year 2024,
Volume: 73 Issue: 4, 1050 - 1071
Hasan Hüseyin Gül
,
Fatma Zehra Doğru
Abstract
The generalized normal (GN) distribution was defined as a generalization of the normal, Laplace, and uniform distributions, with extensive application areas modeling different data settings. At the same time, its maximum likelihood estimators (MLEs) are biased in finite samples. Since such biases may affect the accuracy of estimates, we consider constructing unbiased estimators for unknown parameters of GN distribution. This article adopts the bias-corrected approach, following the analytical methodology suggested by Cox and Snell [1]. Additionally, we explore both regular biases and parametric Bootstrap bias correction techniques. A comprehensive Monte Carlo simulation is conducted to compare the performances of these estimators in estimating GN parameters. Finally, a real data example is presented to illustrate the application of methods.
Supporting Institution
Giresun University, Grnat number: FEN-BAP-A-090323-15
Thanks
We are grateful for the support provided by Giresun University (Grant number: FEN-BAP-A-090323-15) through its Type A project of Scientific Research and Development Projects. Additionally, we thank two anonymous referees and the associate editor for their valuable comments and suggestions, which have greatly improved the paper.
References
- Cox, D. R., Snell, E. J., A general definition of residuals, Journal of the Royal Statistical Society: Series B (Methodological), 30(2) (1968), 248-265. https://doi.org/10.1111/j.2517-6161.1968.tb00724.x
- Briasouli, A., Tsakalides, P., Stouraitis, A., Hidden messages in heavy tails: DCT-Domain watermark detection using AlphaStable models, IEEE Trans, 7(4) (2005), 700-715. https://doi.org/10.1109/TMM.2005.850970
- Kokkinakis, K., Nandi, A., Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling, Signal Processing, 85 (2005), 1852-1858. https://doi.org/10.1016/j.sigpro.2005.02.017
- Sharifi, K., Leon-Garcia, A., Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video, IEEE Transactions on Circuits and Systems for Video Technology, 5(1) (1995), 52-56. https://doi.org/10.1109/76.350779
- Choi, S., Cichocki, A., Amari, S., Flexible independent component analysis. In Neural Networks for Signal Processing 8, Proceedings of the 1998 IEEE Signal Processing Society Workshop, (1998), 83-92. https://doi.org/10.1023/A:1008135131269
- Wu, H. C., Principe, J., Minimum entropy algorithm for source separation, In 1998 Midwest Symposium on Circuits and Systems, Notre Dame, USA, (1998), 242-245. https://doi.org/10.1109/MWSCAS.1998.759478
- Subbotin, M. T., On the Law of Frequency of Error, Maths Books, 31(2) (1923), 206-301. http://mi.mathnet.ru/sm6854
- Nadarajah, S., A generalized normal distribution, Journal of Applied Statistics, 32(7) (2005), 685-694. https://doi.org/10.1080/02664760500079464
- Varanasi, M. K., Aazhang, B., Parametric generalized Gaussian density estimation. Journal of the Acoustical Society of America, 86(4) (1989), 1404-1415. https://doi.org/10.1121/1.398700
- Roenko, A. A., Lukin, V. V., Djurovc, I., Simeunovic, M., Estimation of parameters for generalized Gaussian distribution, In 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), IEEE, (2014), 376-379. https://doi.org/10.1109/ISCCSP.2014.6877892
- Eskin, E. N., Joint Modelling of the Location and Scale Parameters of the Generalized Normal Distribution, Master’s Thesis, Giresun University, Giresun, Turkey, (2022).
- Eskin, E. N., Doğru, F. Z., A heteroscedastic regression model with the generalized normal distribution, Sigma Journal of Engineering and Natural Sciences, in press, 42(5) (2024), 1480-1489. https://sigma.yildiz.edu.tr/article/1673 doi:10.14744/sigma.2024.00114
- Efron, B., The jackknife, the bootstrap and other resampling plans, Society for Industrial and Applied Mathematics, (1982). https://doi.org/10.1137/1.9781611970319
- Efron, B., Tibshirani, R. J., An Introduction to the Bootstrap, Volume 57 of Monographs on Statistics and Applied Probability, Chapman and Hall, New York, 1994. https://doi.org/10.1201/9780429246593
- Cordeiro, G. M., Da Rocha, E. C., Da Rocha, J. G. C., Cribari-Neto, F., Bias-corrected maximum likelihood estimation for the beta distribution, Journal of Statistical Computation and Simulation, 58(1) (1997), 21-35. https://doi.org/10.1080/00949659708811820
- Saha, K., Paul, S., Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics, 61(1) (2005), 179-185. https://doi.org/10.1111/j.0006-341X.2005.030833.x
- Lemonte, A. J., Cribari-Neto, F., Vasconcellos, K. L., Improved statistical inference for the two-parameter Birnbaum–Saunders distribution, Computational Statistics and Data Analysis, 51(9) (2007), 4656-4681. https://doi.org/10.1016/j.csda.2006.08.016
- Giles, D. E., Feng, H., Bias of the maximum likelihood estimators of the two-parameter gamma distribution revisited, Econometrics Working Paper EWP0906, Department of Economics, University of Victoria, 2009. https://ideas.repec.org/p/vic/vicewp/0908.html
- Lemonte, A. J., Improved point estimation for the Kumaraswamy distribution, Journal of Statistical Computation and Simulation, 81(12) (2011), 1971-1982. https://doi.org/10.1080/00949655.2010.511621
- Giles, D. E., A note on improved estimation for the Topp-Leone distribution, Econometrics Working Paper EWP1203, Department of Economics, University of Victoria, 2012. https://ideas.repec.org/p/vic/vicewp/1703.html
- Giles, D. E., Feng, H., Godwin, R. T., On the bias of the maximum likelihood estimator for the two-parameter Lomax distribution, Communications in Statistics-Theory and Methods, 42(11) (2013), 1934-1950. https://doi.org/10.1080/03610926.2011.600506
- Schwartz, J., Godwin, R. T., Giles, D. E., Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution, Journal of Statistical Computation and Simulation, 83(3) (2013), 434-445. https://doi.org/10.1080/00949655.2011.615316
- Zhang, G., Liu, R., Bias-corrected estimators of scalar skew normal, In New Developments in Statistical Modeling, Inference and Application, Springer, Cham, (2016), 203-214. https://doi.org/10.1007/978-3-319-42571-9_11
- Schwartz, J., Giles, D. E., Bias-reduced maximum likelihood estimation of the zero-inflated Poisson distribution, Communications in Statistics-Theory and Methods, 45(2) (2016), 465-478. https://doi.org/10.1080/03610926.2013.824590
- Wang, M., Wang, W., Bias-corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution, Communications in Statistics-Simulation and Computation, 46(1) (2017), 530-545. https://doi.org/10.1080/03610918.2014.970696
- Reath, J., Dong, J., Wang, M., Improved parameter estimation of the log-logistic distribution with applications, Computational Statistics, 33(1) (2018), 339-356. https://doi.org/10.1007/s00180-017-0738-y
- Mazucheli, J., Dey, S., Bias-corrected maximum likelihood estimation of the parameters of the generalized half-normal distribution, Journal of Statistical Computation and Simulation, 88(6) (2018), 1027-1038. https://doi.org/10.1080/00949655.2017.1413649
- Mazucheli, J., Menezes, A. F. B., Dey, S., Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution, Communications in Statistics-Theory and Methods, 47(15) (2018), 3767-3778. https://doi.org/10.1080/03610926.2017.1361993
- Mazucheli, J., Menezes, A. F. B., Dey, S., Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution, Communications in Statistics-Simulation and Computation, 48(7) (2019), 2046-2055. https://doi.org/10.1080/03610918.2018.1433838
- Menezes, A. F. B., Mazucheli, J., Improved maximum likelihood estimators for the parameters of the Johnson SB distribution, Communications in Statistics-Simulation and Computation, 49(6) (2020), 1511-1526. https://doi.org/10.1080/03610918.2018.1498892
- Menezes, A., Mazucheli, J., Alqallaf, F., Ghitany, M. E., Bias-corrected maximum likelihood estimators of the parameters of the Unit-Weibull distribution, Austrian Journal of Statistics, 50(3) (2021), 41-53. https://doi.org/10.17713/ajs.v50i3.1023
- Cordeiro, G. M., Klein, R., Bias correction in ARMA models, Statistics and Probability Letters, 19(3) (1994), 169-176. https://doi.org/10.1016/0167-7152(94)90100-7
- Cribari-Neto, F., Vasconcellos, K. L., Nearly unbiased maximum likelihood estimation for the beta distribution, Journal of Statistical Computation and Simulation, 72(2) (2002), 107-118. https://doi.org/10.1080/00949650212144
Year 2024,
Volume: 73 Issue: 4, 1050 - 1071
Hasan Hüseyin Gül
,
Fatma Zehra Doğru
References
- Cox, D. R., Snell, E. J., A general definition of residuals, Journal of the Royal Statistical Society: Series B (Methodological), 30(2) (1968), 248-265. https://doi.org/10.1111/j.2517-6161.1968.tb00724.x
- Briasouli, A., Tsakalides, P., Stouraitis, A., Hidden messages in heavy tails: DCT-Domain watermark detection using AlphaStable models, IEEE Trans, 7(4) (2005), 700-715. https://doi.org/10.1109/TMM.2005.850970
- Kokkinakis, K., Nandi, A., Exponent parameter estimation for generalized Gaussian probability density functions with application to speech modeling, Signal Processing, 85 (2005), 1852-1858. https://doi.org/10.1016/j.sigpro.2005.02.017
- Sharifi, K., Leon-Garcia, A., Estimation of shape parameter for generalized Gaussian distributions in subband decompositions of video, IEEE Transactions on Circuits and Systems for Video Technology, 5(1) (1995), 52-56. https://doi.org/10.1109/76.350779
- Choi, S., Cichocki, A., Amari, S., Flexible independent component analysis. In Neural Networks for Signal Processing 8, Proceedings of the 1998 IEEE Signal Processing Society Workshop, (1998), 83-92. https://doi.org/10.1023/A:1008135131269
- Wu, H. C., Principe, J., Minimum entropy algorithm for source separation, In 1998 Midwest Symposium on Circuits and Systems, Notre Dame, USA, (1998), 242-245. https://doi.org/10.1109/MWSCAS.1998.759478
- Subbotin, M. T., On the Law of Frequency of Error, Maths Books, 31(2) (1923), 206-301. http://mi.mathnet.ru/sm6854
- Nadarajah, S., A generalized normal distribution, Journal of Applied Statistics, 32(7) (2005), 685-694. https://doi.org/10.1080/02664760500079464
- Varanasi, M. K., Aazhang, B., Parametric generalized Gaussian density estimation. Journal of the Acoustical Society of America, 86(4) (1989), 1404-1415. https://doi.org/10.1121/1.398700
- Roenko, A. A., Lukin, V. V., Djurovc, I., Simeunovic, M., Estimation of parameters for generalized Gaussian distribution, In 2014 6th International Symposium on Communications, Control and Signal Processing (ISCCSP), IEEE, (2014), 376-379. https://doi.org/10.1109/ISCCSP.2014.6877892
- Eskin, E. N., Joint Modelling of the Location and Scale Parameters of the Generalized Normal Distribution, Master’s Thesis, Giresun University, Giresun, Turkey, (2022).
- Eskin, E. N., Doğru, F. Z., A heteroscedastic regression model with the generalized normal distribution, Sigma Journal of Engineering and Natural Sciences, in press, 42(5) (2024), 1480-1489. https://sigma.yildiz.edu.tr/article/1673 doi:10.14744/sigma.2024.00114
- Efron, B., The jackknife, the bootstrap and other resampling plans, Society for Industrial and Applied Mathematics, (1982). https://doi.org/10.1137/1.9781611970319
- Efron, B., Tibshirani, R. J., An Introduction to the Bootstrap, Volume 57 of Monographs on Statistics and Applied Probability, Chapman and Hall, New York, 1994. https://doi.org/10.1201/9780429246593
- Cordeiro, G. M., Da Rocha, E. C., Da Rocha, J. G. C., Cribari-Neto, F., Bias-corrected maximum likelihood estimation for the beta distribution, Journal of Statistical Computation and Simulation, 58(1) (1997), 21-35. https://doi.org/10.1080/00949659708811820
- Saha, K., Paul, S., Bias-corrected maximum likelihood estimator of the negative binomial dispersion parameter, Biometrics, 61(1) (2005), 179-185. https://doi.org/10.1111/j.0006-341X.2005.030833.x
- Lemonte, A. J., Cribari-Neto, F., Vasconcellos, K. L., Improved statistical inference for the two-parameter Birnbaum–Saunders distribution, Computational Statistics and Data Analysis, 51(9) (2007), 4656-4681. https://doi.org/10.1016/j.csda.2006.08.016
- Giles, D. E., Feng, H., Bias of the maximum likelihood estimators of the two-parameter gamma distribution revisited, Econometrics Working Paper EWP0906, Department of Economics, University of Victoria, 2009. https://ideas.repec.org/p/vic/vicewp/0908.html
- Lemonte, A. J., Improved point estimation for the Kumaraswamy distribution, Journal of Statistical Computation and Simulation, 81(12) (2011), 1971-1982. https://doi.org/10.1080/00949655.2010.511621
- Giles, D. E., A note on improved estimation for the Topp-Leone distribution, Econometrics Working Paper EWP1203, Department of Economics, University of Victoria, 2012. https://ideas.repec.org/p/vic/vicewp/1703.html
- Giles, D. E., Feng, H., Godwin, R. T., On the bias of the maximum likelihood estimator for the two-parameter Lomax distribution, Communications in Statistics-Theory and Methods, 42(11) (2013), 1934-1950. https://doi.org/10.1080/03610926.2011.600506
- Schwartz, J., Godwin, R. T., Giles, D. E., Improved maximum-likelihood estimation of the shape parameter in the Nakagami distribution, Journal of Statistical Computation and Simulation, 83(3) (2013), 434-445. https://doi.org/10.1080/00949655.2011.615316
- Zhang, G., Liu, R., Bias-corrected estimators of scalar skew normal, In New Developments in Statistical Modeling, Inference and Application, Springer, Cham, (2016), 203-214. https://doi.org/10.1007/978-3-319-42571-9_11
- Schwartz, J., Giles, D. E., Bias-reduced maximum likelihood estimation of the zero-inflated Poisson distribution, Communications in Statistics-Theory and Methods, 45(2) (2016), 465-478. https://doi.org/10.1080/03610926.2013.824590
- Wang, M., Wang, W., Bias-corrected maximum likelihood estimation of the parameters of the weighted Lindley distribution, Communications in Statistics-Simulation and Computation, 46(1) (2017), 530-545. https://doi.org/10.1080/03610918.2014.970696
- Reath, J., Dong, J., Wang, M., Improved parameter estimation of the log-logistic distribution with applications, Computational Statistics, 33(1) (2018), 339-356. https://doi.org/10.1007/s00180-017-0738-y
- Mazucheli, J., Dey, S., Bias-corrected maximum likelihood estimation of the parameters of the generalized half-normal distribution, Journal of Statistical Computation and Simulation, 88(6) (2018), 1027-1038. https://doi.org/10.1080/00949655.2017.1413649
- Mazucheli, J., Menezes, A. F. B., Dey, S., Improved maximum-likelihood estimators for the parameters of the unit-gamma distribution, Communications in Statistics-Theory and Methods, 47(15) (2018), 3767-3778. https://doi.org/10.1080/03610926.2017.1361993
- Mazucheli, J., Menezes, A. F. B., Dey, S., Bias-corrected maximum likelihood estimators of the parameters of the inverse Weibull distribution, Communications in Statistics-Simulation and Computation, 48(7) (2019), 2046-2055. https://doi.org/10.1080/03610918.2018.1433838
- Menezes, A. F. B., Mazucheli, J., Improved maximum likelihood estimators for the parameters of the Johnson SB distribution, Communications in Statistics-Simulation and Computation, 49(6) (2020), 1511-1526. https://doi.org/10.1080/03610918.2018.1498892
- Menezes, A., Mazucheli, J., Alqallaf, F., Ghitany, M. E., Bias-corrected maximum likelihood estimators of the parameters of the Unit-Weibull distribution, Austrian Journal of Statistics, 50(3) (2021), 41-53. https://doi.org/10.17713/ajs.v50i3.1023
- Cordeiro, G. M., Klein, R., Bias correction in ARMA models, Statistics and Probability Letters, 19(3) (1994), 169-176. https://doi.org/10.1016/0167-7152(94)90100-7
- Cribari-Neto, F., Vasconcellos, K. L., Nearly unbiased maximum likelihood estimation for the beta distribution, Journal of Statistical Computation and Simulation, 72(2) (2002), 107-118. https://doi.org/10.1080/00949650212144