Araştırma Makalesi
BibTex RIS Kaynak Göster

One Dimensional Celular Automa Under Null Boundary Condition

Yıl 2023, , 30 - 37, 12.09.2024
https://doi.org/10.55205/joctensa.2220231531373

Öz

Bir boyutlu hücresel dönüşümler, matris cebiri kullanılarak da temsil edilebilir.Her hücrenin durumunu, yerel kural yardımıyla temsil eden bir matris oluşturulur. Bu matris, her hücrenin durum geçişlerini tanımlayan katsayılar içerir. Temsili matris, sistemin durumunu bir vektör olarak temsil eder ve dönüşüm kuralları matris çarpımlarıyla uygulanır. Bu yöntem, sistemin zamanla nasıl evrildiğini incelemeyi sağlar.Bu çalışmada sıfır sınır şartı altında, bir boyutlu hücresel dönüşümleri inceliyoruz. Sonlu cisimler üzerindeki hesaplamalar yapalırken matris cebirlerinden faydalanıyoruz. Bundan önceki çalışmalarda genellikle yarıçap 1 alınarak temsili matrisler elde edildi. Diğer çalışmalardan farklı olarak yarıçapı 2 alıyoruz. Bu şart altında temsili matrisi elde ediyoruz.

Kaynakça

  • Von, N.J. (1966). “The theory of self-reproducing automata (Edited by A.W.Burks)”,Univ. of Illinois Press, Urbana.
  • Wolfram, S. (1983). “Statistical mechanics of cellular automata”, Rev. Mod. Phys. 55:3 601-644.
  • Das, A.K. and Chaudhurı, P.P., (1993). “Vector space theoretic analysis of additive cellular automata and its applications for pseudo exhaustive test pattern generation”, IEEE Trans. On Computers 42 (3): 340–35
  • Cinkir, Z. Akın, H.and Siap, I. (2011). “Reversibility of 1D cellular automata with periodic boundary over finite fields Zp”, J. Stat. Phys.143 , no.4, 807–823
  • Akın, H., Sah, F. and Siap, I. (2012).”On 1D reversible cellular automata with reflective boundary over the prime field of order p”, Internat. J. Modern Phys. C23 , 1250004.
  • Akın, H., Siap, I. and Uguz. S. (2014). “One-dimensional cellular automata with reflective boundary conditions and radius three”, Acta Physica Polonica Series a 125 405–407.
  • Chang, C.H., Su, J.Y. , Akın, H. and Sah, F. (2017). “Reversibility problem of multidi-mensional finite cellular automata”, J. Stat. Phys. 168 , 208–231.
  • Khan, A.R., Choudhury, P.P., Dihidar, K., Mitra, S. and Sarkar, P. (1997). “VLSI architecture of a cellular automata machine”, Computers and Mathematics with Applications, 33, (5) 79–94.

Sıfır Sınır Şartı Altında Bir Boyutlu Hücresel Dönüşümler

Yıl 2023, , 30 - 37, 12.09.2024
https://doi.org/10.55205/joctensa.2220231531373

Öz

One-dimensional cellular automata can also be represented using matrix algebra. A matrix is constructed to represent the state of each cell using the local rule. This matrix contains coefficients that describe the state transitions of each cell. The representative matrix represents the system's state as a vector and transformation rules are applied through matrix multiplications. This method allows for the examination of how the system evolves over time. In this study, we investigate one-dimensional cellular automata under null boundary conditions. Calculations are performed over finite fields using matrix algebra. In previous studies, representative matrices were typically obtained by considering a radius of 1. In contrast, we take a radius of 2 and derive the representative matrix under this condition.

Kaynakça

  • Von, N.J. (1966). “The theory of self-reproducing automata (Edited by A.W.Burks)”,Univ. of Illinois Press, Urbana.
  • Wolfram, S. (1983). “Statistical mechanics of cellular automata”, Rev. Mod. Phys. 55:3 601-644.
  • Das, A.K. and Chaudhurı, P.P., (1993). “Vector space theoretic analysis of additive cellular automata and its applications for pseudo exhaustive test pattern generation”, IEEE Trans. On Computers 42 (3): 340–35
  • Cinkir, Z. Akın, H.and Siap, I. (2011). “Reversibility of 1D cellular automata with periodic boundary over finite fields Zp”, J. Stat. Phys.143 , no.4, 807–823
  • Akın, H., Sah, F. and Siap, I. (2012).”On 1D reversible cellular automata with reflective boundary over the prime field of order p”, Internat. J. Modern Phys. C23 , 1250004.
  • Akın, H., Siap, I. and Uguz. S. (2014). “One-dimensional cellular automata with reflective boundary conditions and radius three”, Acta Physica Polonica Series a 125 405–407.
  • Chang, C.H., Su, J.Y. , Akın, H. and Sah, F. (2017). “Reversibility problem of multidi-mensional finite cellular automata”, J. Stat. Phys. 168 , 208–231.
  • Khan, A.R., Choudhury, P.P., Dihidar, K., Mitra, S. and Sarkar, P. (1997). “VLSI architecture of a cellular automata machine”, Computers and Mathematics with Applications, 33, (5) 79–94.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sayısal Analiz
Bölüm Araştırma Makalesi
Yazarlar

Ferhat Şah 0000-0003-4847-9180

Yayımlanma Tarihi 12 Eylül 2024
Gönderilme Tarihi 10 Ağustos 2024
Kabul Tarihi 26 Ağustos 2024
Yayımlandığı Sayı Yıl 2023

Kaynak Göster

APA Şah, F. (2024). One Dimensional Celular Automa Under Null Boundary Condition. Cihannüma Teknoloji Fen Ve Mühendislik Bilimleri Akademi Dergisi, 2(2), 30-37. https://doi.org/10.55205/joctensa.2220231531373