Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2024, Cilt: 3 Sayı: 2, 68 - 91, 02.12.2025
https://doi.org/10.55205/joctensa.3220241807092

Öz

Kaynakça

  • Afet ve Acil Durum Yönetimi Başkanlığı. (2018). Türkiye Bina Deprem Yönetmeliği (TBDY-2018). Resmî Gazete, 30364 (Mükerrer), 18 Mart.
  • Akinci, H., & Yavuz Ozalp, A. (2025). Investigating the effects of different data classification methods on landslide susceptibility mapping. Advances in Space Research, 75(10), 3427–3450. https://doi.org/10.1016/j.asr.2024.12.020
  • Amerikan Demir ve Çelik Enstitüsü [AISI]. (1999). Soğuk şekillendirilmiş çelik yapılar tasarım kılavuzu. Amerikan Demir ve Çelik Enstitüsü.
  • ANSI. (1972). Safety code for the use, care, and protection of abrasive wheels (ANSI B7.1–1972). American National Standards Institute.
  • Astaneh-Asl, A., Jones, B., Zhao, Y., & Hwa, R. (2002). Progressive collapse resistance of steel building floors (Report No. UCB/CEE-STEEL). University of California, Berkeley.
  • BOCA. (1972). The BOCA basic building code accumulative supplement 1972: Containing approved changes for the basic building code. Building Officials & Code Administrators International.
  • Casciati, F., & Faravelli, L. (1984). Progressive failure for seismic reliability analysis. Engineering Structures, 6(2), 97–103.
  • Department of Defense. (2018). UFC 3-301-01: Structural engineering. United States Department of Defense. https://www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc/ufc-3-301-01
  • Dusenberry, D., Cagley, J., & Aquino, W. (2004). Multihazard Mitigation Council national workshop on best practices guidelines for the mitigation of progressive collapse of buildings. National Institute of Building Sciences.
  • Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315–323.
  • Elsayed, W. M., Moaty, M. A. N. A., & Issa, M. E. (2016). Effect of reinforcing steel debonding on RC frame performance in resisting progressive collapse. HBRC Journal, 12, 242–254.
  • Ergüçlü, E. (2013). Yapısal çelik tasarımında yeni bir zorluk: Aşamalı göçme [Yüksek Lisans Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü].
  • European Committee for Standardization. (2006). Eurocode 1: Actions on structures – Part 1-7: General actions – Accidental actions (EN 1991-1-7). European Committee for Standardization.
  • Euronews. (2016, February 16). Rusya'da doğalgaz patlaması: En az 7 ölü. Euronews. https://tr.euronews.com/2016/02/16/rusya-da-dogalgaz-patlamasi-en-az-7-olu
  • Federal Emergency Management Agency [FEMA]. (2002). World Trade Center building performance study: Data collection, preliminary observations, and recommendations (T. McAllister, Ed., 2nd ed.). Federal Insurance and Mitigation Administration.
  • Güneydoğu Ekspres. (2023, Ağustos 30). Depremde duvarları yıkılan iş yerinde kömür satmaya devam ediyor. Güneydoğu Ekspres. https://www.guneydoguekspres.com/depremde-duvarlari-yikilan-is-yerinde-komur-satmaya-devam-ediyor
  • Hinman, E. (1998). Approach for designing civilian structures against terrorist attack. American Concrete Institute.
  • HuffPost. (2016, July 16). Chilling photos show aftermath of destruction from failed coup in Turkey. HuffPost. https://www.huffpost.com/entry/turkey-coup-aftermath-photos_n_578a4955e4b08608d334c90c
  • ICC (Uluslararası Kod Konseyi). (2006). Uluslararası bina kodu (International Building Code). Uluslararası Kod Konseyi.
  • İhlas Haber Ajansı (İHA). (2024, November 11). Doğalgaz patlaması. İhlas Haber Ajansı. http://www.iha.com.tr/haber-ankaradaki-dogalgaz-patlamasi-guvenlik-kamerasinda-617848/
  • International Code Council. (2021). International Building Code. International Code Council. https://codes.iccsafe.org/content/IBC2021P2
  • Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss – Part I: Simplified assessment framework. Engineering Structures, 30(5), 1308–1326.
  • Khandelwal, K., El-Tawil, S., & Sadek, F. (2009). Progressive collapse analysis of seismically designed steel braced frames. Journal of Constructional Steel Research, 65, 699–708.
  • Kılıçer, S. (2013). Yapı-zemin etkileşiminin betonarme yapıların tasarımına etkisi [Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi]. Trabzon, Türkiye.
  • Kılıçer, S. (2025a). The impact of weapon systems on structural damage and progressive collapse: A case study of Belgorod Oblast. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 215–234. https://doi.org/10.53433/yyufbed.1511907
  • Kılıçer, S. (2025b). Progressive collapse analysis of a reinforced concrete structure using the Enhanced Local Resistance (ELR) method: A comparison of UFC 4-023-03 and the Turkish Earthquake Code (TEC 2018). Doğal Afetler ve Çevre Dergisi, 11(2), 513–525. https://doi.org/10.21324/dacd.1656403
  • King, S., & Delatte, N. J. (2004). Collapse of 2000 Commonwealth Avenue: Punching shear case study. Journal of Performance of Constructed Facilities, 18(1), 54–61. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:1(54)
  • Leyendecker, E. V., & Ellingwood, B. R. (1977). Design to reduce the risk of progressive collapse (Building Science Series). National Bureau of Standards.
  • Malla, R. B., & Nalluri, B. B. (1995). Dynamic effects of member failure on response of truss type space structure. Journal of Spacecraft and Rockets, 32(3), 545–551.
  • Mlakar, P. F., Dusenberry, D. O., Harris, J. F., Haynes, G., Phan, L. T., & Sozen, M. A. (2003). Findings and recommendations from Pentagon crash. In Forensic engineering: Proceedings of the third congress (pp. 43–45). American Society of Civil Engineers.
  • Ozgan, K., Kılıçer, S., & Daloglu, A. T. (2023a). Soil–structure interaction effect on the resistance of a steel frame against progressive collapse using linear static and nonlinear dynamic procedures. Journal of Performance of Constructed Facilities, 37(1), 04022070. https://doi.org/10.1061/JPCFEV.CFENG-4181.
  • Ozgan, K., Kılıçer, S., & Daloglu, A. T. (2023b). Evaluation of progressive collapse potential of a RC school building considering soil–structure interaction. Asian Journal of Civil Engineering, 24, 1199–1213. https://doi.org/10.1007/s42107-022-00562-5
  • Reuters. (2025, May 19). Along the path of destruction after rare tornado strikes city of St. Louis [Fotoğraf]. Reuters. https://www.reuters.com/pictures/along-path-destruction-after-rare-tornado-strikes-city-st-louis-2025-05-19
  • SBCCI (Southern Building Code Congress International). (1994). Standard building code. Southern Building Code Congress International.
  • Song, B. I., & Sezen, H. (2013). Experimental and analytical progressive collapse assessment of a steel frame building. Engineering Structures, 56, 664–672.
  • Tayfur, B. (2023). Çelik yapıların aşamalı göçme etkisinde optimum boyutlandırılması [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • UFC 4-010-01. (2018). DoD minimum antiterrorism standards for buildings. U.S. Department of Defense.
  • UFC 4-010-02. (2012). DoD minimum antiterrorism standoff distances for buildings (FOUO). U.S. Department of Defense.
  • UFC 4-020-01. (2008). DoD security engineering facilities planning manual. U.S. Department of Defense.
  • UFC 4-023-03. (2016). Design of buildings to resist progressive collapse. U.S. Department of Defense.
  • U.S. General Services Administration. (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. U.S. General Services Administration (GSA).

Effect of Natural Disasters on Progressive Collapse in Steel Structures: Cold-Formed Steel Example

Yıl 2024, Cilt: 3 Sayı: 2, 68 - 91, 02.12.2025
https://doi.org/10.55205/joctensa.3220241807092

Öz

Natural disasters such as earthquakes and floods can cause serious damage to critical structures. Countries like the United States, the United Kingdom, and Canada consider progressive collapse analyses for prestigious and vital buildings. However, in Türkiye, such analyses are not yet widely recognized, and critical structures such as public buildings, military facilities, and hospitals are often constructed without these evaluations. In this study, the progressive collapse resistance of a three-story Cold-Formed Steel (CFS) structure was evaluated using the Alternate Path Method with a Linear Static Analysis approach. The analyses were based on the globally accepted UFC 4-023-03 standard published by the U.S. Department of Defense, along with structural materials commonly used in Türkiye. The building was modeled, connection designs were calculated, and its behavior was examined under various scenarios. The findings aim to serve as a guiding resource for design engineers and increase awareness of progressive collapse evaluations in Türkiye. This project emphasizes the importance of integrating such analyses into the design process, especially for sensitive structures such as public buildings, military facilities, and healthcare institutions, to ensure structural safety under extraordinary loads like terrorist attacks and natural disasters. The knowledge and experience gained through the project are intended to serve as a reference for engineers and contribute to closing the knowledge gap in the sector.

Kaynakça

  • Afet ve Acil Durum Yönetimi Başkanlığı. (2018). Türkiye Bina Deprem Yönetmeliği (TBDY-2018). Resmî Gazete, 30364 (Mükerrer), 18 Mart.
  • Akinci, H., & Yavuz Ozalp, A. (2025). Investigating the effects of different data classification methods on landslide susceptibility mapping. Advances in Space Research, 75(10), 3427–3450. https://doi.org/10.1016/j.asr.2024.12.020
  • Amerikan Demir ve Çelik Enstitüsü [AISI]. (1999). Soğuk şekillendirilmiş çelik yapılar tasarım kılavuzu. Amerikan Demir ve Çelik Enstitüsü.
  • ANSI. (1972). Safety code for the use, care, and protection of abrasive wheels (ANSI B7.1–1972). American National Standards Institute.
  • Astaneh-Asl, A., Jones, B., Zhao, Y., & Hwa, R. (2002). Progressive collapse resistance of steel building floors (Report No. UCB/CEE-STEEL). University of California, Berkeley.
  • BOCA. (1972). The BOCA basic building code accumulative supplement 1972: Containing approved changes for the basic building code. Building Officials & Code Administrators International.
  • Casciati, F., & Faravelli, L. (1984). Progressive failure for seismic reliability analysis. Engineering Structures, 6(2), 97–103.
  • Department of Defense. (2018). UFC 3-301-01: Structural engineering. United States Department of Defense. https://www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc/ufc-3-301-01
  • Dusenberry, D., Cagley, J., & Aquino, W. (2004). Multihazard Mitigation Council national workshop on best practices guidelines for the mitigation of progressive collapse of buildings. National Institute of Building Sciences.
  • Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315–323.
  • Elsayed, W. M., Moaty, M. A. N. A., & Issa, M. E. (2016). Effect of reinforcing steel debonding on RC frame performance in resisting progressive collapse. HBRC Journal, 12, 242–254.
  • Ergüçlü, E. (2013). Yapısal çelik tasarımında yeni bir zorluk: Aşamalı göçme [Yüksek Lisans Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü].
  • European Committee for Standardization. (2006). Eurocode 1: Actions on structures – Part 1-7: General actions – Accidental actions (EN 1991-1-7). European Committee for Standardization.
  • Euronews. (2016, February 16). Rusya'da doğalgaz patlaması: En az 7 ölü. Euronews. https://tr.euronews.com/2016/02/16/rusya-da-dogalgaz-patlamasi-en-az-7-olu
  • Federal Emergency Management Agency [FEMA]. (2002). World Trade Center building performance study: Data collection, preliminary observations, and recommendations (T. McAllister, Ed., 2nd ed.). Federal Insurance and Mitigation Administration.
  • Güneydoğu Ekspres. (2023, Ağustos 30). Depremde duvarları yıkılan iş yerinde kömür satmaya devam ediyor. Güneydoğu Ekspres. https://www.guneydoguekspres.com/depremde-duvarlari-yikilan-is-yerinde-komur-satmaya-devam-ediyor
  • Hinman, E. (1998). Approach for designing civilian structures against terrorist attack. American Concrete Institute.
  • HuffPost. (2016, July 16). Chilling photos show aftermath of destruction from failed coup in Turkey. HuffPost. https://www.huffpost.com/entry/turkey-coup-aftermath-photos_n_578a4955e4b08608d334c90c
  • ICC (Uluslararası Kod Konseyi). (2006). Uluslararası bina kodu (International Building Code). Uluslararası Kod Konseyi.
  • İhlas Haber Ajansı (İHA). (2024, November 11). Doğalgaz patlaması. İhlas Haber Ajansı. http://www.iha.com.tr/haber-ankaradaki-dogalgaz-patlamasi-guvenlik-kamerasinda-617848/
  • International Code Council. (2021). International Building Code. International Code Council. https://codes.iccsafe.org/content/IBC2021P2
  • Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss – Part I: Simplified assessment framework. Engineering Structures, 30(5), 1308–1326.
  • Khandelwal, K., El-Tawil, S., & Sadek, F. (2009). Progressive collapse analysis of seismically designed steel braced frames. Journal of Constructional Steel Research, 65, 699–708.
  • Kılıçer, S. (2013). Yapı-zemin etkileşiminin betonarme yapıların tasarımına etkisi [Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi]. Trabzon, Türkiye.
  • Kılıçer, S. (2025a). The impact of weapon systems on structural damage and progressive collapse: A case study of Belgorod Oblast. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 215–234. https://doi.org/10.53433/yyufbed.1511907
  • Kılıçer, S. (2025b). Progressive collapse analysis of a reinforced concrete structure using the Enhanced Local Resistance (ELR) method: A comparison of UFC 4-023-03 and the Turkish Earthquake Code (TEC 2018). Doğal Afetler ve Çevre Dergisi, 11(2), 513–525. https://doi.org/10.21324/dacd.1656403
  • King, S., & Delatte, N. J. (2004). Collapse of 2000 Commonwealth Avenue: Punching shear case study. Journal of Performance of Constructed Facilities, 18(1), 54–61. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:1(54)
  • Leyendecker, E. V., & Ellingwood, B. R. (1977). Design to reduce the risk of progressive collapse (Building Science Series). National Bureau of Standards.
  • Malla, R. B., & Nalluri, B. B. (1995). Dynamic effects of member failure on response of truss type space structure. Journal of Spacecraft and Rockets, 32(3), 545–551.
  • Mlakar, P. F., Dusenberry, D. O., Harris, J. F., Haynes, G., Phan, L. T., & Sozen, M. A. (2003). Findings and recommendations from Pentagon crash. In Forensic engineering: Proceedings of the third congress (pp. 43–45). American Society of Civil Engineers.
  • Ozgan, K., Kılıçer, S., & Daloglu, A. T. (2023a). Soil–structure interaction effect on the resistance of a steel frame against progressive collapse using linear static and nonlinear dynamic procedures. Journal of Performance of Constructed Facilities, 37(1), 04022070. https://doi.org/10.1061/JPCFEV.CFENG-4181.
  • Ozgan, K., Kılıçer, S., & Daloglu, A. T. (2023b). Evaluation of progressive collapse potential of a RC school building considering soil–structure interaction. Asian Journal of Civil Engineering, 24, 1199–1213. https://doi.org/10.1007/s42107-022-00562-5
  • Reuters. (2025, May 19). Along the path of destruction after rare tornado strikes city of St. Louis [Fotoğraf]. Reuters. https://www.reuters.com/pictures/along-path-destruction-after-rare-tornado-strikes-city-st-louis-2025-05-19
  • SBCCI (Southern Building Code Congress International). (1994). Standard building code. Southern Building Code Congress International.
  • Song, B. I., & Sezen, H. (2013). Experimental and analytical progressive collapse assessment of a steel frame building. Engineering Structures, 56, 664–672.
  • Tayfur, B. (2023). Çelik yapıların aşamalı göçme etkisinde optimum boyutlandırılması [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • UFC 4-010-01. (2018). DoD minimum antiterrorism standards for buildings. U.S. Department of Defense.
  • UFC 4-010-02. (2012). DoD minimum antiterrorism standoff distances for buildings (FOUO). U.S. Department of Defense.
  • UFC 4-020-01. (2008). DoD security engineering facilities planning manual. U.S. Department of Defense.
  • UFC 4-023-03. (2016). Design of buildings to resist progressive collapse. U.S. Department of Defense.
  • U.S. General Services Administration. (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. U.S. General Services Administration (GSA).

Doğal Afetlerin Çelik Yapılarda Aşamalı Göçme Mekanizmasına Etkisi: Soğuk Şekillendirilmiş Çelik Örneği

Yıl 2024, Cilt: 3 Sayı: 2, 68 - 91, 02.12.2025
https://doi.org/10.55205/joctensa.3220241807092

Öz

Depremler ve seller gibi doğal afetler kritik yapılarda ciddi hasarlara yol açabilmektedir. Amerika Birleşik Devletleri, Birleşik Krallık ve Kanada gibi ülkelerde prestijli ve hayati öneme sahip binalar için ilerlemeli göçme analizleri zorunlu tutulurken, Türkiye’de bu analizler henüz yaygın olarak tanınmamakta ve kamu binaları, askeri tesisler ile hastaneler gibi kritik yapılar çoğu zaman bu değerlendirmeler yapılmaksızın inşa edilmektedir. Bu çalışmada, üç katlı bir Soğuk Şekillendirilmiş Çelik (SŞÇ) yapının aşamalı göçme dayanımı, Alternatif Yol Yöntemi (AYY) kullanılarak Doğrusal Statik Analiz yaklaşımıyla değerlendirilmiştir. Analizlerde ABD Savunma Bakanlığı tarafından yayımlanan, dünya çapında kabul gören UFC 4-023-03 standardı ile Türkiye’de yaygın olarak kullanılan yapı malzemeleri esas alınmıştır. Bina modellenmiş, birleşim tasarımları hesaplanmış ve çeşitli senaryolar altında davranışı incelenmiştir. Elde edilen bulguların tasarım mühendisleri için yol gösterici bir kaynak oluşturması ve Türkiye’de aşamalı göçme değerlendirmeleri konusunda farkındalığın artırılmasına katkı sağlaması hedeflenmektedir. Çalışma, kamu binaları, askeri tesisler ve sağlık kurumları gibi hassas yapılar için tasarım sürecine bu tür analizlerin entegre edilmesinin, terör saldırıları ve doğal afetler gibi olağanüstü yükler altında yapısal güvenliğin sağlanması açısından önemini vurgulamaktadır. Proje kapsamında edinilen bilgi ve deneyimlerin, mühendisler için bir referans niteliği taşıması ve sektördeki bilgi açığının kapatılmasına katkıda bulunması amaçlanmaktadır.

Destekleyen Kurum

TÜBİTAK

Teşekkür

Desteklerinden ötürü TÜBİTAK'a teşekkür ederiz.

Kaynakça

  • Afet ve Acil Durum Yönetimi Başkanlığı. (2018). Türkiye Bina Deprem Yönetmeliği (TBDY-2018). Resmî Gazete, 30364 (Mükerrer), 18 Mart.
  • Akinci, H., & Yavuz Ozalp, A. (2025). Investigating the effects of different data classification methods on landslide susceptibility mapping. Advances in Space Research, 75(10), 3427–3450. https://doi.org/10.1016/j.asr.2024.12.020
  • Amerikan Demir ve Çelik Enstitüsü [AISI]. (1999). Soğuk şekillendirilmiş çelik yapılar tasarım kılavuzu. Amerikan Demir ve Çelik Enstitüsü.
  • ANSI. (1972). Safety code for the use, care, and protection of abrasive wheels (ANSI B7.1–1972). American National Standards Institute.
  • Astaneh-Asl, A., Jones, B., Zhao, Y., & Hwa, R. (2002). Progressive collapse resistance of steel building floors (Report No. UCB/CEE-STEEL). University of California, Berkeley.
  • BOCA. (1972). The BOCA basic building code accumulative supplement 1972: Containing approved changes for the basic building code. Building Officials & Code Administrators International.
  • Casciati, F., & Faravelli, L. (1984). Progressive failure for seismic reliability analysis. Engineering Structures, 6(2), 97–103.
  • Department of Defense. (2018). UFC 3-301-01: Structural engineering. United States Department of Defense. https://www.wbdg.org/ffc/dod/unified-facilities-criteria-ufc/ufc-3-301-01
  • Dusenberry, D., Cagley, J., & Aquino, W. (2004). Multihazard Mitigation Council national workshop on best practices guidelines for the mitigation of progressive collapse of buildings. National Institute of Building Sciences.
  • Ellingwood, B. R. (2006). Mitigating risk from abnormal loads and progressive collapse. Journal of Performance of Constructed Facilities, 20(4), 315–323.
  • Elsayed, W. M., Moaty, M. A. N. A., & Issa, M. E. (2016). Effect of reinforcing steel debonding on RC frame performance in resisting progressive collapse. HBRC Journal, 12, 242–254.
  • Ergüçlü, E. (2013). Yapısal çelik tasarımında yeni bir zorluk: Aşamalı göçme [Yüksek Lisans Tezi, Boğaziçi Üniversitesi Fen Bilimleri Enstitüsü].
  • European Committee for Standardization. (2006). Eurocode 1: Actions on structures – Part 1-7: General actions – Accidental actions (EN 1991-1-7). European Committee for Standardization.
  • Euronews. (2016, February 16). Rusya'da doğalgaz patlaması: En az 7 ölü. Euronews. https://tr.euronews.com/2016/02/16/rusya-da-dogalgaz-patlamasi-en-az-7-olu
  • Federal Emergency Management Agency [FEMA]. (2002). World Trade Center building performance study: Data collection, preliminary observations, and recommendations (T. McAllister, Ed., 2nd ed.). Federal Insurance and Mitigation Administration.
  • Güneydoğu Ekspres. (2023, Ağustos 30). Depremde duvarları yıkılan iş yerinde kömür satmaya devam ediyor. Güneydoğu Ekspres. https://www.guneydoguekspres.com/depremde-duvarlari-yikilan-is-yerinde-komur-satmaya-devam-ediyor
  • Hinman, E. (1998). Approach for designing civilian structures against terrorist attack. American Concrete Institute.
  • HuffPost. (2016, July 16). Chilling photos show aftermath of destruction from failed coup in Turkey. HuffPost. https://www.huffpost.com/entry/turkey-coup-aftermath-photos_n_578a4955e4b08608d334c90c
  • ICC (Uluslararası Kod Konseyi). (2006). Uluslararası bina kodu (International Building Code). Uluslararası Kod Konseyi.
  • İhlas Haber Ajansı (İHA). (2024, November 11). Doğalgaz patlaması. İhlas Haber Ajansı. http://www.iha.com.tr/haber-ankaradaki-dogalgaz-patlamasi-guvenlik-kamerasinda-617848/
  • International Code Council. (2021). International Building Code. International Code Council. https://codes.iccsafe.org/content/IBC2021P2
  • Izzuddin, B. A., Vlassis, A. G., Elghazouli, A. Y., & Nethercot, D. A. (2008). Progressive collapse of multi-storey buildings due to sudden column loss – Part I: Simplified assessment framework. Engineering Structures, 30(5), 1308–1326.
  • Khandelwal, K., El-Tawil, S., & Sadek, F. (2009). Progressive collapse analysis of seismically designed steel braced frames. Journal of Constructional Steel Research, 65, 699–708.
  • Kılıçer, S. (2013). Yapı-zemin etkileşiminin betonarme yapıların tasarımına etkisi [Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi]. Trabzon, Türkiye.
  • Kılıçer, S. (2025a). The impact of weapon systems on structural damage and progressive collapse: A case study of Belgorod Oblast. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 30(1), 215–234. https://doi.org/10.53433/yyufbed.1511907
  • Kılıçer, S. (2025b). Progressive collapse analysis of a reinforced concrete structure using the Enhanced Local Resistance (ELR) method: A comparison of UFC 4-023-03 and the Turkish Earthquake Code (TEC 2018). Doğal Afetler ve Çevre Dergisi, 11(2), 513–525. https://doi.org/10.21324/dacd.1656403
  • King, S., & Delatte, N. J. (2004). Collapse of 2000 Commonwealth Avenue: Punching shear case study. Journal of Performance of Constructed Facilities, 18(1), 54–61. https://doi.org/10.1061/(ASCE)0887-3828(2004)18:1(54)
  • Leyendecker, E. V., & Ellingwood, B. R. (1977). Design to reduce the risk of progressive collapse (Building Science Series). National Bureau of Standards.
  • Malla, R. B., & Nalluri, B. B. (1995). Dynamic effects of member failure on response of truss type space structure. Journal of Spacecraft and Rockets, 32(3), 545–551.
  • Mlakar, P. F., Dusenberry, D. O., Harris, J. F., Haynes, G., Phan, L. T., & Sozen, M. A. (2003). Findings and recommendations from Pentagon crash. In Forensic engineering: Proceedings of the third congress (pp. 43–45). American Society of Civil Engineers.
  • Ozgan, K., Kılıçer, S., & Daloglu, A. T. (2023a). Soil–structure interaction effect on the resistance of a steel frame against progressive collapse using linear static and nonlinear dynamic procedures. Journal of Performance of Constructed Facilities, 37(1), 04022070. https://doi.org/10.1061/JPCFEV.CFENG-4181.
  • Ozgan, K., Kılıçer, S., & Daloglu, A. T. (2023b). Evaluation of progressive collapse potential of a RC school building considering soil–structure interaction. Asian Journal of Civil Engineering, 24, 1199–1213. https://doi.org/10.1007/s42107-022-00562-5
  • Reuters. (2025, May 19). Along the path of destruction after rare tornado strikes city of St. Louis [Fotoğraf]. Reuters. https://www.reuters.com/pictures/along-path-destruction-after-rare-tornado-strikes-city-st-louis-2025-05-19
  • SBCCI (Southern Building Code Congress International). (1994). Standard building code. Southern Building Code Congress International.
  • Song, B. I., & Sezen, H. (2013). Experimental and analytical progressive collapse assessment of a steel frame building. Engineering Structures, 56, 664–672.
  • Tayfur, B. (2023). Çelik yapıların aşamalı göçme etkisinde optimum boyutlandırılması [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • UFC 4-010-01. (2018). DoD minimum antiterrorism standards for buildings. U.S. Department of Defense.
  • UFC 4-010-02. (2012). DoD minimum antiterrorism standoff distances for buildings (FOUO). U.S. Department of Defense.
  • UFC 4-020-01. (2008). DoD security engineering facilities planning manual. U.S. Department of Defense.
  • UFC 4-023-03. (2016). Design of buildings to resist progressive collapse. U.S. Department of Defense.
  • U.S. General Services Administration. (2003). Progressive collapse analysis and design guidelines for new federal office buildings and major modernization projects. U.S. General Services Administration (GSA).
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular İnşaat Mühendisliğinde Sayısal Modelleme, Karmaşık Sivil Sistemler, Yapı Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Saffet Kılıçer 0000-0002-5445-0352

Yaren Can

Gönderilme Tarihi 20 Ekim 2025
Kabul Tarihi 1 Aralık 2025
Yayımlanma Tarihi 2 Aralık 2025
Yayımlandığı Sayı Yıl 2024 Cilt: 3 Sayı: 2

Kaynak Göster

APA Kılıçer, S., & Can, Y. (2025). Doğal Afetlerin Çelik Yapılarda Aşamalı Göçme Mekanizmasına Etkisi: Soğuk Şekillendirilmiş Çelik Örneği. Cihannüma Teknoloji Fen ve Mühendislik Bilimleri Akademi Dergisi, 3(2), 68-91. https://doi.org/10.55205/joctensa.3220241807092