Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 6 Sayı: 2, 137 - 146, 27.12.2019

Öz

Kaynakça

  • Abut, T. (2016). Modeling and Optimal Control of a DC Motor. Int. J. Eng. Trends Technol, 32(3), 146-150.
  • Anderson, B. D., Moore, J. B. (2007). Optimal control: linear quadratic methods. Courier Corporation.
  • Bertsekas, D. P. (2014). Constrained optimization and Lagrange multiplier methods. Academic press.
  • Bessas, A., Benalia, A., Boudjema, F. (2016). Integral sliding mode control for trajectory tracking of wheeled mobile robot in presence of uncertainties. Journal of Control Science and Engineering, 2016.
  • Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. Differential geometric control theory, 27(1), 181-191.
  • Canale, M., Fagiano, L., & Milanese, M. (2010). Efficient model predictive control for nonlinear systems via function approximation techniques. IEEE Transactions on Automatic Control, 55(8), 1911-1916.
  • Fu, J., Chai, T., Su, C. Y., Jin, Y. (2013). Motion/force tracking control of nonholonomic mechanical systems via combining cascaded design and backstepping. Automatica, 49(12), 3682-3686.
  • Hamel, T., Meizel, D. (1996). Robust control laws for wheeled mobile robots. International journal of systems science, 27(8), 695-704.
  • Jiang, Z. P., Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Transactions on Automatic control, 44(2), 265-279.
  • Kara, S. E., Arıkan, K. B. (2019). İki tekerlekli ve tek kollu robotik platformun kayan kipli denetimi ve parametre optimizasyonu. DÜMF Mühendislik Dergisi, 10(2), 591-601.
  • Lagunes, M. L., Castillo, O., Soria, J., Garcia, M., Valdez, F. (2019). Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm. Granular Computing, 4(2), 185-195.
  • Olivares-Suarez, M., Palma, W., Paredes, F., Olguín, E., Norero, E. (2014). A binary coded firefly algorithm that solves the set covering problem. Science and Technology, 17(3), 252-264.
  • Patle, B. K., Parhi, D. R., Jagadeesh, A., Kashyap, S. K. (2017). On firefly algorithm: optimization and application in mobile robot navigation. World Journal of Engineering, 14(1), 65-76.
  • Patle, B. K., Pandey, A., Jagadeesh, A., Parhi, D. R. (2018). Path planning in uncertain environment by using firefly algorithm. Defence technology, 14(6), 691-701.
  • Wu, H. M., & Karkoub, M. (2019). Hierarchical Fuzzy Sliding-Mode Adaptive Control for the Trajectory Tracking of Differential-Driven Mobile Robots. International Journal of Fuzzy Systems, 21(1), 33-49.
  • Wu, X., Jin, P., Zou, T., Qi, Z., Xiao, H., & Lou, P. (2019). Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots. Journal of Intelligent & Robotic Systems, 1-13.
  • Xin, L., Wang, Q., She, J., & Li, Y. (2016). Robust adaptive tracking control of wheeled mobile robot. Robotics and Autonomous Systems, 78, 36-48.
  • Yang, J. M., & Kim, J. H. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on robotics and automation, 15(3), 578-587.
  • Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
  • Yang, X. S., He, X. (2013). Firefly algorithm: recent advances and applications. arXiv preprint arXiv:1308.3898.

MODELING AND OPTIMAL TRAJECTORY TRACKING CONTROL OF WHEELED A MOBILE ROBOT

Yıl 2019, Cilt: 6 Sayı: 2, 137 - 146, 27.12.2019

Öz

Mobile robots have an unlimited workspace, unlike
conventional fixed to the robot. Therefore, they are frequently studied from
past to present. In this study, it is aimed to model wheeled a mobile
robot(WMR) and realize optimal trajectory tracking control. The mathematical model
of the robot was obtained. The Linear Quadratic Regulator (LQR) method, one of
the optimum control methods for controlling the robot has been proposed. The Q
and R parameters affecting the performance of the proposed control method were
obtained by using the Firefly optimization algorithm. Both process noise and
measurement noise have been added to control the robot in conditions close to
the actual ambient conditions. As a result, in order to demonstrate the
validity of the obtained model and the proposed control method, the robot was
performed control in the simulation environment. The obtained results were
given graphically and the results were examined.

Kaynakça

  • Abut, T. (2016). Modeling and Optimal Control of a DC Motor. Int. J. Eng. Trends Technol, 32(3), 146-150.
  • Anderson, B. D., Moore, J. B. (2007). Optimal control: linear quadratic methods. Courier Corporation.
  • Bertsekas, D. P. (2014). Constrained optimization and Lagrange multiplier methods. Academic press.
  • Bessas, A., Benalia, A., Boudjema, F. (2016). Integral sliding mode control for trajectory tracking of wheeled mobile robot in presence of uncertainties. Journal of Control Science and Engineering, 2016.
  • Brockett, R. W. (1983). Asymptotic stability and feedback stabilization. Differential geometric control theory, 27(1), 181-191.
  • Canale, M., Fagiano, L., & Milanese, M. (2010). Efficient model predictive control for nonlinear systems via function approximation techniques. IEEE Transactions on Automatic Control, 55(8), 1911-1916.
  • Fu, J., Chai, T., Su, C. Y., Jin, Y. (2013). Motion/force tracking control of nonholonomic mechanical systems via combining cascaded design and backstepping. Automatica, 49(12), 3682-3686.
  • Hamel, T., Meizel, D. (1996). Robust control laws for wheeled mobile robots. International journal of systems science, 27(8), 695-704.
  • Jiang, Z. P., Nijmeijer, H. (1999). A recursive technique for tracking control of nonholonomic systems in chained form. IEEE Transactions on Automatic control, 44(2), 265-279.
  • Kara, S. E., Arıkan, K. B. (2019). İki tekerlekli ve tek kollu robotik platformun kayan kipli denetimi ve parametre optimizasyonu. DÜMF Mühendislik Dergisi, 10(2), 591-601.
  • Lagunes, M. L., Castillo, O., Soria, J., Garcia, M., Valdez, F. (2019). Optimization of granulation for fuzzy controllers of autonomous mobile robots using the Firefly Algorithm. Granular Computing, 4(2), 185-195.
  • Olivares-Suarez, M., Palma, W., Paredes, F., Olguín, E., Norero, E. (2014). A binary coded firefly algorithm that solves the set covering problem. Science and Technology, 17(3), 252-264.
  • Patle, B. K., Parhi, D. R., Jagadeesh, A., Kashyap, S. K. (2017). On firefly algorithm: optimization and application in mobile robot navigation. World Journal of Engineering, 14(1), 65-76.
  • Patle, B. K., Pandey, A., Jagadeesh, A., Parhi, D. R. (2018). Path planning in uncertain environment by using firefly algorithm. Defence technology, 14(6), 691-701.
  • Wu, H. M., & Karkoub, M. (2019). Hierarchical Fuzzy Sliding-Mode Adaptive Control for the Trajectory Tracking of Differential-Driven Mobile Robots. International Journal of Fuzzy Systems, 21(1), 33-49.
  • Wu, X., Jin, P., Zou, T., Qi, Z., Xiao, H., & Lou, P. (2019). Backstepping Trajectory Tracking Based on Fuzzy Sliding Mode Control for Differential Mobile Robots. Journal of Intelligent & Robotic Systems, 1-13.
  • Xin, L., Wang, Q., She, J., & Li, Y. (2016). Robust adaptive tracking control of wheeled mobile robot. Robotics and Autonomous Systems, 78, 36-48.
  • Yang, J. M., & Kim, J. H. (1999). Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots. IEEE Transactions on robotics and automation, 15(3), 578-587.
  • Yang, X. S. (2010). Nature-inspired metaheuristic algorithms. Luniver press.
  • Yang, X. S., He, X. (2013). Firefly algorithm: recent advances and applications. arXiv preprint arXiv:1308.3898.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Bilimleri
Bölüm Makaleler
Yazarlar

Tayfun Abut 0000-0003-4646-3345

Mesut Huseyinoğlu Bu kişi benim 0000-0002-6130-6658

Yayımlanma Tarihi 27 Aralık 2019
Gönderilme Tarihi 4 Kasım 2019
Kabul Tarihi 25 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 6 Sayı: 2

Kaynak Göster

APA Abut, T., & Huseyinoğlu, M. (2019). MODELING AND OPTIMAL TRAJECTORY TRACKING CONTROL OF WHEELED A MOBILE ROBOT. Caucasian Journal of Science, 6(2), 137-146.

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png