Araştırma Makalesi
BibTex RIS Kaynak Göster

Boyaya Duyarlı Güneş Pillerinde Trifenilamin Tabanlı Organik Boyaların Kuantum Kimyasal Hesaplamaları

Yıl 2021, Cilt: 8 Sayı: 1, 79 - 92, 30.06.2021
https://doi.org/10.48138/cjo.943191

Öz

Bu çalışmada organik boya esaslı güneş pili hücrelerinde (DSSC) kullanılmak üzere trifenilamin (TFA) tabanlı organik moleküllerin kuantum kimyasal hesaplamaları yapılmış ve yorumlanmıştır. DSSC molekülleri elektronu itme-çekme sistemi ile çalıştığı için TFA-1 bileşiğini donör-akseptör (D-A), TFA-2 ve TFA-3 bileşiklerinin dizilimi donör-π köprü-akseptör (D-π-A) şeklinde tasarlanmıştır. Daha sonra çalışılan moleküller donör kısımlarına farklı ikame gruplarla zincir uzatma yapılarak TFA1a’dan TFA3c’ye genişletilmiştir. Tüm moleküllerin yapılarını ve absorbsiyon spektrumlarını araştırmak için yoğunluk fonksiyonel teorisi (DFT) ve zamana bağımlı yoğunluk fonksiyonel teorisi (TD-DFT) hesapları kullanılmıştır. Sonuçta; geometriler, TFA tabanlı boyalarda kuvvetli eşleşmenin olduğunu; elektronik yapılar, donörden akseptöre molekül içi yük transferinin gerçekleştiğini göstermektedir.

Kaynakça

  • Afrooz, M., & Dehghani, H. (2014). Enhanced photovoltaic properties of modified redox electrolyte in dye-sensitized solar cells using tributyl phosphate as additive. Journal of Power Sources, 262, 140-146.
  • Asbury, J. B., Wang, Y. Q., Hao, E., Ghosh, H. N., & Lian, T. (2001). Evidences of hot excited state electron injection from sensitizer molecules to TiO 2 nanocrystalline thin films. Research on Chemical Intermediates, 27(4), 393-406.
  • Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., ... & Grätzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon to electron conversion efficiencies. Nature, 395(6702), 583-585.
  • Becke, A. D. (1993). A new mixing of Hartree-Fock and local density‐functional theories. The Journal of chemical physics, 98(2), 1372-1377.
  • Belfield, K. D., Schafer, K. J., Mourad, W., & Reinhardt, B. A. (2000). Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensations. The Journal of organic chemistry, 65(15), 4475-4481.
  • Beytur, M., Turhan Irak, Z., Manap, S., Yüksek, H. (2019). Synthesis, characterization and theoretical determination of corrosion inhibitor activities of some new 4, 5-dihydro-1H-1, 2, 4-Triazol-5-one derivatives. Heliyon, 5(6), e01809.
  • Beytur, M., Avınca, I. (2021). Molecular, Electronic, Nonlinear Optical and Spectroscopic Analysis of Heterocyclic 3-Substituted-4-(3-methyl-2-thienylmethyleneamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones: Experiment and DFT Calculations. Heterocyclic Communications, 27, 1-16.
  • Bignozzi, C. A., Argazzi, R., & Kleverlaan, C. J. (2000). Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews, 29(2), 87-96.
  • Bonhoˆte, P., Moser, J. E., Humphry-Baker, R., Vlachopoulos, N., Zakeeruddin, S. M., Walder, L., & Grätzel, M. (1999). Long-lived photoinduced charge separation and redox-type photochromism on mesoporous oxide films sensitized by molecular dyads. Journal of the American Chemical Society, 121(6), 1324-1336.
  • Chatterjee, T., Sarma, M., & Das, S. K. (2010). Synthesis and photo-physical properties of methoxy-substituted π-conjugated-2, 2′-bipyridines. Tetrahedron Letters, 51(15), 1985-1988.
  • Cho, J. S., Kimoto, A., Higuchi, M., & Yamamoto, K. (2005). Synthesis of Diphenylamine‐Substituted Phenylazomethine Dendrimers and the Performance of Organic Light‐Emitting Diodes. Macromolecular Chemistry and Physics, 206(6), 635-641.
  • Erten-Ela, S., Marszalek, M., Tekoglu, S., Can, M., & Icli, S. (2010). Synthesis, characterization and photovoltaic properties of novel molecules based on triarylamine dyes. Current Applied Physics, 10(3), 749-756.
  • Facchetti, A., Yoon, M. H., & Marks, T. J. (2005). Gate dielectrics for organic field‐effect transistors: new opportunities for organic electronics. Advanced Materials, 17(14), 1705-1725.
  • Ferrere, S., Zaban, A., & Gregg, B. A. (1997). Dye sensitization of nanocrystalline tin oxide by perylene derivatives. The Journal of Physical Chemistry B, 101(23), 4490-4493.
  • Fonkem, C., Ejuh, G. W., Nya, F. T., Kamsi, R. Y., & Ndjaka, J. M. B. (2020). Theoretical study of optoelectronic properties of the molecule 2-cyano-3-[4-(diphenylamino) phenyl] acrylic acid. Journal of the Iranian Chemical Society, 17(3), 533-543.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; et al. (1977). Photocell using covalently-bound dyes on semiconductor surfaces. Nature, 268(5617), 226-228.
  • Grätzel, M. (2005). Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett., 34, 8-13.
  • Grätzel, M. (2005). Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem., 44, 6841-6851. Hagfeldt, A., & Graetzel, M. (1995). Light-induced redox reactions in nanocrystalline systems. Chemical reviews, 95(1), 49-68.
  • Hara, K., Sayama, K., Ohga, Y., Shinpo, A., Suga, S., & Arakawa, H. (2001). A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications, (6), 569-570.
  • Horiuchi, T., Miura, H., Sumioka, K., & Uchida, S. (2004). High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society, 126(39), 12218-12219.
  • Irak, Z. T., & Gümüş, S. (2017). Heterotricyclic compounds via click reaction: A computational study. Noble Int. J. Sci. Res, 7, 80-89.
  • Jung, I., Lee, J. K., Song, K. H., Song, K., Kang, S. O., & Ko, J. (2007). Synthesis and photovoltaic properties of efficient organic dyes containing the benzo [b] furan moiety for solar cells. The Journal of organic chemistry, 72(10), 3652-3658
  • Justin Thomas, K. R., Lin, J. T., Tao, Y. T., & Ko, C. W. (2001). Light-emitting carbazole derivatives: potential electroluminescent materials. Journal of the American Chemical Society, 123(38), 9404-9411.
  • Kim, S., Lee, J. K., Kang, S. O., Ko, J., Yum, J. H., Fantacci, S., ... & Grätzel, M. (2006). Molecular engineering of organic sensitizers for solar cell applications. Journal of the American Chemical Society, 128(51), 16701-16707.
  • Kitamura, T., Ikeda, M., Shigaki, K., Inoue, T., Anderson, N. A., Ai, X., ... & Yanagida, S. (2004). Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chemistry of Materials, 16(9), 1806-1812.
  • Liang, M., Xu, W., Cai, F., Chen, P., Peng, B., Chen, J., & Li, Z. (2007). New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry C, 111(11), 4465-4472.
  • Li, G., Jiang, K. J., Li, Y. F., Li, S. L., & Yang, L. M. (2008). Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 112(30), 11591-11599.
  • Nasr, C., Liu, D., Hotchandani, S., & Kamat, P. V. (1996). Dye-capped semiconductor nanoclusters. Excited state and photosensitization aspects of rhodamine 6G H-aggregates bound to SiO2 and SnO2 colloids. The Journal of Physical Chemistry, 100(26), 11054-11061.
  • Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., ... & Grätzel, M. (1993). Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115(14), 6382-6390.
  • Otaka, H., Kira, M., Yano, K., Ito, S., Mitekura, H., Kawata, T., & Matsui, F. (2004). Multi-colored dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 67-73.
  • Peumans, P., & Forrest, S. R. (2001). Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells. Applied Physics Letters, 79(1), 126-128.
  • Qin, P., Yang, X., Chen, R., Sun, L., Marinado, T., Edvinsson, T., ... & Hagfeldt, A. (2007). Influence of π-conjugation units in organic dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 111(4), 1853-1860.
  • Rao, T. N., & Bahadur, L. (1997). Photoelectrochemical studies on dye‐sensitized particulate ZnO thin‐film photoelectrodes in nonaqueous media. Journal of the Electrochemical Society, 144(1), 179.
  • Rensmo, H., Keis, K., Lindström, H., Södergren, S., Solbrand, A., Hagfeldt, A., ... & Muhammed, M. (1997). High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. The Journal of Physical Chemistry B, 101(14), 2598-2601.
  • Rochford, J., Chu, D., Hagfeldt, A., & Galoppini, E. (2007). Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. Journal of the American Chemical Society, 129(15), 4655-4665.
  • Sariciftci, N. S., Smilowitz, L., Heeger, A. J., & Wudl, F. (1992). Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258(5087), 1474-1476.
  • Sayama, K., Sugino, M., Sugihara, H., Abe, Y., & Arakawa, H. (1998). Photosensitization of porous TiO2 semiconductor electrode with xanthene dyes. Chemistry letters, 27(8), 753-754.
  • Sayama, K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., ... & Arakawa, H. (2000). Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chemical Communications, (13), 1173-1174.
  • Spraul, B. K., Suresh, S., Sassa, T., Herranz, M. Á., Echegoyen, L., Wada, T., ... & Smith Jr, D. W. (2004). Thermally stable triaryl amino chromophores with high molecular hyperpolarizabilities. Tetrahedron letters, 45(16), 3253-3256.
  • Stergiopoulos, T., Arabatzis, I. M., Cachet, H., & Falaras, P. (2003). Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex: solid-state solar cell assembling by incorporating a composite polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 155(1-3), 163-170. Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185.
  • Thelakkat, M., Schmitz, C., & Schmidt, H. W. (2002). Fully vapor‐deposited thin‐layer titanium dioxide solar cells. Advanced Materials, 14(8), 577-581.
  • Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 261(5559), 402-403.
  • Velusamy, M., Justin Thomas, K. R., Lin, J. T., Hsu, Y. C., & Ho, K. C. (2005). Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Organic Letters, 7(10), 1899-1902.
  • Xu, W., Peng, B., Chen, J., Liang, M., & Cai, F. (2008). New triphenylamine-based dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 112(3), 874-880.
  • Xu, J., Wang, L., Liang, G., Bai, Z., Wang, L., Xu, W., & Shen, X. (2010). Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties. Bulletin of the Korean Chemical Society, 31(9), 2531-2536
  • Zafer, C. (2006). Organik Boya Esaslı Nanokristal Yapılı ince Film Güneş Pili Üretimi. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora tezi.

Quantum Chemical Calculations of Triphenylamine Based Organic Dyes in Dye Sensitive Solar Cells

Yıl 2021, Cilt: 8 Sayı: 1, 79 - 92, 30.06.2021
https://doi.org/10.48138/cjo.943191

Öz

In this study, quantum chemical calculations of triphenylamine (TPA) based organic molecules for use in organic dye based solar cell (DSSC) have been made and interpreted. Since DSSC molecules work with the electron push-pull system, the TPA1 compound is designed as donor-acceptor (D-A), and the sequence of TPA2 and TPA3 compounds is donor-π bridge-acceptor (D-π-A). Later, the studied molecules were extended from TPA1a to TPA3c by chain extension with different substitution groups on the donor side. Density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations are used to investigate the structures and absorption spectra of all molecules. In the event; geometries show that there is a strong match in TPA based paints; electronic structures show that intramolecular charge transfer takes place from donor to acceptor.

Kaynakça

  • Afrooz, M., & Dehghani, H. (2014). Enhanced photovoltaic properties of modified redox electrolyte in dye-sensitized solar cells using tributyl phosphate as additive. Journal of Power Sources, 262, 140-146.
  • Asbury, J. B., Wang, Y. Q., Hao, E., Ghosh, H. N., & Lian, T. (2001). Evidences of hot excited state electron injection from sensitizer molecules to TiO 2 nanocrystalline thin films. Research on Chemical Intermediates, 27(4), 393-406.
  • Bach, U., Lupo, D., Comte, P., Moser, J. E., Weissörtel, F., Salbeck, J., ... & Grätzel, M. (1998). Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon to electron conversion efficiencies. Nature, 395(6702), 583-585.
  • Becke, A. D. (1993). A new mixing of Hartree-Fock and local density‐functional theories. The Journal of chemical physics, 98(2), 1372-1377.
  • Belfield, K. D., Schafer, K. J., Mourad, W., & Reinhardt, B. A. (2000). Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensations. The Journal of organic chemistry, 65(15), 4475-4481.
  • Beytur, M., Turhan Irak, Z., Manap, S., Yüksek, H. (2019). Synthesis, characterization and theoretical determination of corrosion inhibitor activities of some new 4, 5-dihydro-1H-1, 2, 4-Triazol-5-one derivatives. Heliyon, 5(6), e01809.
  • Beytur, M., Avınca, I. (2021). Molecular, Electronic, Nonlinear Optical and Spectroscopic Analysis of Heterocyclic 3-Substituted-4-(3-methyl-2-thienylmethyleneamino)-4,5-dihydro-1H-1,2,4-triazol-5-ones: Experiment and DFT Calculations. Heterocyclic Communications, 27, 1-16.
  • Bignozzi, C. A., Argazzi, R., & Kleverlaan, C. J. (2000). Molecular and supramolecular sensitization of nanocrystalline wide band-gap semiconductors with mononuclear and polynuclear metal complexes. Chemical Society Reviews, 29(2), 87-96.
  • Bonhoˆte, P., Moser, J. E., Humphry-Baker, R., Vlachopoulos, N., Zakeeruddin, S. M., Walder, L., & Grätzel, M. (1999). Long-lived photoinduced charge separation and redox-type photochromism on mesoporous oxide films sensitized by molecular dyads. Journal of the American Chemical Society, 121(6), 1324-1336.
  • Chatterjee, T., Sarma, M., & Das, S. K. (2010). Synthesis and photo-physical properties of methoxy-substituted π-conjugated-2, 2′-bipyridines. Tetrahedron Letters, 51(15), 1985-1988.
  • Cho, J. S., Kimoto, A., Higuchi, M., & Yamamoto, K. (2005). Synthesis of Diphenylamine‐Substituted Phenylazomethine Dendrimers and the Performance of Organic Light‐Emitting Diodes. Macromolecular Chemistry and Physics, 206(6), 635-641.
  • Erten-Ela, S., Marszalek, M., Tekoglu, S., Can, M., & Icli, S. (2010). Synthesis, characterization and photovoltaic properties of novel molecules based on triarylamine dyes. Current Applied Physics, 10(3), 749-756.
  • Facchetti, A., Yoon, M. H., & Marks, T. J. (2005). Gate dielectrics for organic field‐effect transistors: new opportunities for organic electronics. Advanced Materials, 17(14), 1705-1725.
  • Ferrere, S., Zaban, A., & Gregg, B. A. (1997). Dye sensitization of nanocrystalline tin oxide by perylene derivatives. The Journal of Physical Chemistry B, 101(23), 4490-4493.
  • Fonkem, C., Ejuh, G. W., Nya, F. T., Kamsi, R. Y., & Ndjaka, J. M. B. (2020). Theoretical study of optoelectronic properties of the molecule 2-cyano-3-[4-(diphenylamino) phenyl] acrylic acid. Journal of the Iranian Chemical Society, 17(3), 533-543.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; et al. (1977). Photocell using covalently-bound dyes on semiconductor surfaces. Nature, 268(5617), 226-228.
  • Grätzel, M. (2005). Mesoscopic solar cells for electricity and hydrogen production from sunlight. Chem. Lett., 34, 8-13.
  • Grätzel, M. (2005). Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells. Inorg. Chem., 44, 6841-6851. Hagfeldt, A., & Graetzel, M. (1995). Light-induced redox reactions in nanocrystalline systems. Chemical reviews, 95(1), 49-68.
  • Hara, K., Sayama, K., Ohga, Y., Shinpo, A., Suga, S., & Arakawa, H. (2001). A coumarin-derivative dye sensitized nanocrystalline TiO2 solar cell having a high solar-energy conversion efficiency up to 5.6%. Chemical Communications, (6), 569-570.
  • Horiuchi, T., Miura, H., Sumioka, K., & Uchida, S. (2004). High efficiency of dye-sensitized solar cells based on metal-free indoline dyes. Journal of the American Chemical Society, 126(39), 12218-12219.
  • Irak, Z. T., & Gümüş, S. (2017). Heterotricyclic compounds via click reaction: A computational study. Noble Int. J. Sci. Res, 7, 80-89.
  • Jung, I., Lee, J. K., Song, K. H., Song, K., Kang, S. O., & Ko, J. (2007). Synthesis and photovoltaic properties of efficient organic dyes containing the benzo [b] furan moiety for solar cells. The Journal of organic chemistry, 72(10), 3652-3658
  • Justin Thomas, K. R., Lin, J. T., Tao, Y. T., & Ko, C. W. (2001). Light-emitting carbazole derivatives: potential electroluminescent materials. Journal of the American Chemical Society, 123(38), 9404-9411.
  • Kim, S., Lee, J. K., Kang, S. O., Ko, J., Yum, J. H., Fantacci, S., ... & Grätzel, M. (2006). Molecular engineering of organic sensitizers for solar cell applications. Journal of the American Chemical Society, 128(51), 16701-16707.
  • Kitamura, T., Ikeda, M., Shigaki, K., Inoue, T., Anderson, N. A., Ai, X., ... & Yanagida, S. (2004). Phenyl-conjugated oligoene sensitizers for TiO2 solar cells. Chemistry of Materials, 16(9), 1806-1812.
  • Liang, M., Xu, W., Cai, F., Chen, P., Peng, B., Chen, J., & Li, Z. (2007). New triphenylamine-based organic dyes for efficient dye-sensitized solar cells. The Journal of Physical Chemistry C, 111(11), 4465-4472.
  • Li, G., Jiang, K. J., Li, Y. F., Li, S. L., & Yang, L. M. (2008). Efficient structural modification of triphenylamine-based organic dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 112(30), 11591-11599.
  • Nasr, C., Liu, D., Hotchandani, S., & Kamat, P. V. (1996). Dye-capped semiconductor nanoclusters. Excited state and photosensitization aspects of rhodamine 6G H-aggregates bound to SiO2 and SnO2 colloids. The Journal of Physical Chemistry, 100(26), 11054-11061.
  • Nazeeruddin, M. K., Kay, A., Rodicio, I., Humphry-Baker, R., Müller, E., Liska, P., ... & Grätzel, M. (1993). Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society, 115(14), 6382-6390.
  • Otaka, H., Kira, M., Yano, K., Ito, S., Mitekura, H., Kawata, T., & Matsui, F. (2004). Multi-colored dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 164(1-3), 67-73.
  • Peumans, P., & Forrest, S. R. (2001). Very-high-efficiency double-heterostructure copper phthalocyanine/C 60 photovoltaic cells. Applied Physics Letters, 79(1), 126-128.
  • Qin, P., Yang, X., Chen, R., Sun, L., Marinado, T., Edvinsson, T., ... & Hagfeldt, A. (2007). Influence of π-conjugation units in organic dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 111(4), 1853-1860.
  • Rao, T. N., & Bahadur, L. (1997). Photoelectrochemical studies on dye‐sensitized particulate ZnO thin‐film photoelectrodes in nonaqueous media. Journal of the Electrochemical Society, 144(1), 179.
  • Rensmo, H., Keis, K., Lindström, H., Södergren, S., Solbrand, A., Hagfeldt, A., ... & Muhammed, M. (1997). High light-to-energy conversion efficiencies for solar cells based on nanostructured ZnO electrodes. The Journal of Physical Chemistry B, 101(14), 2598-2601.
  • Rochford, J., Chu, D., Hagfeldt, A., & Galoppini, E. (2007). Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. Journal of the American Chemical Society, 129(15), 4655-4665.
  • Sariciftci, N. S., Smilowitz, L., Heeger, A. J., & Wudl, F. (1992). Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 258(5087), 1474-1476.
  • Sayama, K., Sugino, M., Sugihara, H., Abe, Y., & Arakawa, H. (1998). Photosensitization of porous TiO2 semiconductor electrode with xanthene dyes. Chemistry letters, 27(8), 753-754.
  • Sayama, K., Hara, K., Mori, N., Satsuki, M., Suga, S., Tsukagoshi, S., ... & Arakawa, H. (2000). Photosensitization of a porous TiO2 electrode with merocyanine dyes containing a carboxyl group and a long alkyl chain. Chemical Communications, (13), 1173-1174.
  • Spraul, B. K., Suresh, S., Sassa, T., Herranz, M. Á., Echegoyen, L., Wada, T., ... & Smith Jr, D. W. (2004). Thermally stable triaryl amino chromophores with high molecular hyperpolarizabilities. Tetrahedron letters, 45(16), 3253-3256.
  • Stergiopoulos, T., Arabatzis, I. M., Cachet, H., & Falaras, P. (2003). Photoelectrochemistry at SnO2 particulate fractal electrodes sensitized by a ruthenium complex: solid-state solar cell assembling by incorporating a composite polymer electrolyte. Journal of Photochemistry and Photobiology A: Chemistry, 155(1-3), 163-170. Tang, C. W. (1986). Two‐layer organic photovoltaic cell. Applied physics letters, 48(2), 183-185.
  • Thelakkat, M., Schmitz, C., & Schmidt, H. W. (2002). Fully vapor‐deposited thin‐layer titanium dioxide solar cells. Advanced Materials, 14(8), 577-581.
  • Tsubomura, H., Matsumura, M., Nomura, Y., & Amamiya, T. (1976). Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature, 261(5559), 402-403.
  • Velusamy, M., Justin Thomas, K. R., Lin, J. T., Hsu, Y. C., & Ho, K. C. (2005). Organic dyes incorporating low-band-gap chromophores for dye-sensitized solar cells. Organic Letters, 7(10), 1899-1902.
  • Xu, W., Peng, B., Chen, J., Liang, M., & Cai, F. (2008). New triphenylamine-based dyes for dye-sensitized solar cells. The Journal of Physical Chemistry C, 112(3), 874-880.
  • Xu, J., Wang, L., Liang, G., Bai, Z., Wang, L., Xu, W., & Shen, X. (2010). Density Functional Theory Study on Triphenylamine-based Dye Sensitizers Containing Different Donor Moieties. Bulletin of the Korean Chemical Society, 31(9), 2531-2536
  • Zafer, C. (2006). Organik Boya Esaslı Nanokristal Yapılı ince Film Güneş Pili Üretimi. Ege Üniversitesi Fen Bilimleri Enstitüsü, Doktora tezi.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Bilimleri
Bölüm Caucasian Journal of Science
Yazarlar

Zeynep Şilan Turhan 0000-0002-3587-2576

Yayımlanma Tarihi 30 Haziran 2021
Gönderilme Tarihi 26 Mayıs 2021
Kabul Tarihi 22 Haziran 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 8 Sayı: 1

Kaynak Göster

APA Turhan, Z. Ş. (2021). Boyaya Duyarlı Güneş Pillerinde Trifenilamin Tabanlı Organik Boyaların Kuantum Kimyasal Hesaplamaları. Caucasian Journal of Science, 8(1), 79-92. https://doi.org/10.48138/cjo.943191

dizin1.png dizin2.png dizin3.png  dizin5.png dizin6.png dizin7.png