Research Article
BibTex RIS Cite

Year 2022, Volume: 5 Issue: 3, 168 - 182, 15.09.2022
https://doi.org/10.33205/cma.1142905

Abstract

Project Number

There is no Project Number

References

  • D. Hertz: Simple Bounds on the Extreme Eigenvalues of Toeplitz Matrices, IEEE Transactions on Information Theory, 38 (1) (1992), 175–176.
  • N. J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia (1996).
  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. Stummel: Diskrete Approximation linear Operatoren. II (Discrete Approximation of Linear Operators. II). Math. Z., 120 (1971), 231–264.
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis (English Translation by E.R. Dawson of the First Edition of the German Original of 1971), Scottish Academic Press, Edinburgh (1980).
  • F. Stummel, K. Hainer: Praktische Mathematik (Introduction to Numerical Analysis), Second Edition, B.G. Teubner, Stuttgart (1982).
  • F. Stummel, L. Kohaupt: Eigenwertaufgaben in Hilbertschen Räumne. Mit Aufgaben und vollständigen Lösungen, (Eigenvalue Problems in Hilbert spaces. With Exercises and Complete Solutions), Logos Verlag, Berlin (2021).
  • J. H. Wilkinson: The Algebraic Eigenvalue Problem, Oxford University Press, Oxford (1965).
  • Y.Wu: On the positiveness of a functional symmetric matrix used in digital filter design, Journal of Circuits, Systems, and Computers, 13 (5) (2004), 1105–1110.
  • Y. Wu, D. H. Mugler: A robust DSP integrator for acceleration signals, IEEE Transactions on Biomedical Engineering, Vol. 51 (2) (2004), 385–389.
  • Y. Wu, N. Sepehri: Interpolation of bandlimited signals from uniform or non-uniform integral samples, Electronic Letters, 47 (1) (2011), 6th Jan.

Lower estimates on the condition number of a Toeplitz sinc matrix and related questions

Year 2022, Volume: 5 Issue: 3, 168 - 182, 15.09.2022
https://doi.org/10.33205/cma.1142905

Abstract

As one new result, for a symmetric Toeplitz $ \operatorname{sinc} $ $n \times n$-matrix $A(t)$ depending on a parameter $t$, lower estimates (tending to infinity as t vanishes) on the pertinent condition number are derived. A further important finding is that prior to improving the obtained lower estimates it seems to be more important to determine the lower bound on the parameter $t$ such that the smallest eigenvalue $\mu_n(t)$ of $A(t)$ can be reliably computed since this is a precondition for determining a reliable value for the condition number of the Toeplitz $ \operatorname{sinc} $ matrix. The style of the paper is expository in order to address a large readership.

Supporting Institution

There is no Supporting Institution

Project Number

There is no Project Number

References

  • D. Hertz: Simple Bounds on the Extreme Eigenvalues of Toeplitz Matrices, IEEE Transactions on Information Theory, 38 (1) (1992), 175–176.
  • N. J. Higham: Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia (1996).
  • G. H. Goloub, Ch. F. van Loan: Matrix Computations, The Johns Hopkins University Press, Baltimore and London (1989).
  • F. Stummel: Diskrete Approximation linear Operatoren. II (Discrete Approximation of Linear Operators. II). Math. Z., 120 (1971), 231–264.
  • F. Stummel, K. Hainer: Introduction to Numerical Analysis (English Translation by E.R. Dawson of the First Edition of the German Original of 1971), Scottish Academic Press, Edinburgh (1980).
  • F. Stummel, K. Hainer: Praktische Mathematik (Introduction to Numerical Analysis), Second Edition, B.G. Teubner, Stuttgart (1982).
  • F. Stummel, L. Kohaupt: Eigenwertaufgaben in Hilbertschen Räumne. Mit Aufgaben und vollständigen Lösungen, (Eigenvalue Problems in Hilbert spaces. With Exercises and Complete Solutions), Logos Verlag, Berlin (2021).
  • J. H. Wilkinson: The Algebraic Eigenvalue Problem, Oxford University Press, Oxford (1965).
  • Y.Wu: On the positiveness of a functional symmetric matrix used in digital filter design, Journal of Circuits, Systems, and Computers, 13 (5) (2004), 1105–1110.
  • Y. Wu, D. H. Mugler: A robust DSP integrator for acceleration signals, IEEE Transactions on Biomedical Engineering, Vol. 51 (2) (2004), 385–389.
  • Y. Wu, N. Sepehri: Interpolation of bandlimited signals from uniform or non-uniform integral samples, Electronic Letters, 47 (1) (2011), 6th Jan.
There are 11 citations in total.

Details

Primary Language English
Subjects Applied Mathematics
Journal Section Research Article
Authors

Ludwig Kohaupt 0000-0003-4364-9144

Yan Wu 0000-0002-7202-8980

Project Number There is no Project Number
Publication Date September 15, 2022
Published in Issue Year 2022 Volume: 5 Issue: 3

Cite

APA Kohaupt, L., & Wu, Y. (2022). Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. Constructive Mathematical Analysis, 5(3), 168-182. https://doi.org/10.33205/cma.1142905
AMA Kohaupt L, Wu Y. Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. CMA. September 2022;5(3):168-182. doi:10.33205/cma.1142905
Chicago Kohaupt, Ludwig, and Yan Wu. “Lower Estimates on the Condition Number of a Toeplitz Sinc Matrix and Related Questions”. Constructive Mathematical Analysis 5, no. 3 (September 2022): 168-82. https://doi.org/10.33205/cma.1142905.
EndNote Kohaupt L, Wu Y (September 1, 2022) Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. Constructive Mathematical Analysis 5 3 168–182.
IEEE L. Kohaupt and Y. Wu, “Lower estimates on the condition number of a Toeplitz sinc matrix and related questions”, CMA, vol. 5, no. 3, pp. 168–182, 2022, doi: 10.33205/cma.1142905.
ISNAD Kohaupt, Ludwig - Wu, Yan. “Lower Estimates on the Condition Number of a Toeplitz Sinc Matrix and Related Questions”. Constructive Mathematical Analysis 5/3 (September2022), 168-182. https://doi.org/10.33205/cma.1142905.
JAMA Kohaupt L, Wu Y. Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. CMA. 2022;5:168–182.
MLA Kohaupt, Ludwig and Yan Wu. “Lower Estimates on the Condition Number of a Toeplitz Sinc Matrix and Related Questions”. Constructive Mathematical Analysis, vol. 5, no. 3, 2022, pp. 168-82, doi:10.33205/cma.1142905.
Vancouver Kohaupt L, Wu Y. Lower estimates on the condition number of a Toeplitz sinc matrix and related questions. CMA. 2022;5(3):168-82.