Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2021, , 104 - 118, 01.03.2021
https://doi.org/10.33205/cma.835582

Öz

Kaynakça

  • S. T. Ali, J. P. Antoine and J. P. Gazeau: Continuous Frames in Hilbert Space, Ann. Physics, 222 (1993), 1–37.
  • J-P. Antoine, C. Trapani: Partial Inner Product Spaces: Theory and Applications, Lecture Notes in Mathematics, vol. 1986, Springer, Berlin (2009).
  • J-P. Antoine, P. Balazs: Frames and semi-frames, J. Phys. A: Math. Theor., 44 (2011), 205201.
  • J-P. Antoine, C. Trapani: Partial inner product spaces, metric operators and generalized hermiticity, J. Phys. A: Math. Theor., 46 (2013), 025204; Corrigendum, ibid. 46 (2013), 329501.
  • J-P. Antoine, C. Trapani: Operator (quasi-)similarity, quasi-Hermitian operators and all that, Non-Hermitian Hamiltonians in Quantum Physics, pp. 45–65; F.Bagarello, R. Passante , C.Trapani, (eds.), Springer Proceedings in Physics, vol. 184, Springer Int. Publ. Switzerland (2016).
  • J-P. Antoine, C. Trapani: Reproducing pairs of measurable functions and partial inner product spaces, Adv. Operator Th., 2 (2017), 126–146.
  • J-P. Antoine, C. Trapani: Beyond frames: Semi-frames and reproducing pairs, Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, T. Diagana, B. Toni (eds), Springer, Cham (2018).
  • J-P. Antoine, R. Corso and C. Trapani: Lower semi-frames and metric operators, Mediterranean J. Math., 18 (2021), 11.
  • P. Balazs, J-P. Antoine and A. Gryboś: Weighted and controlled frames: Mutual relationship and first numerical properties, Int. J. Wavelets, Multires. and Inform. Proc., 8 (2010), 109–132.
  • G. Bellomonte: Continuous frames for unbounded operators, arXiv:1912.13097 [math.FA], submitted.
  • G. Bellomonte, R. Corso: Frames and weak frames for unbounded operators, Advances in Computational Mathematics, 46 (2020), art. n. 38, 21 pp.
  • J. Bergh, J. Löfström: Interpolation Spaces. Springer, Berlin (1976).
  • R. Corso: Sesquilinear forms associated to sequences on Hilbert spaces, Monatsh. Math., 189 (2019), 625–650.
  • L. Gâvruţa: Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139–144.
  • G. Kaiser:A Friendly Guide to Wavelets, Birkhäuser, Boston (1994).
  • T. Kato: Perturbation Theory for Linear Operators, Springer, New York (1966).
  • W. Rudin: Functional Analysis, McGraw-Hill , New York-Düsseldorf-Johannesburg (1973).
  • K. Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht (2012).
  • A.A. Zakharova: On the properties of generalized frames, Math. Notes, 83 (2008), 190–200.

Weak $A$-frames and weak $A$-semi-frames

Yıl 2021, , 104 - 118, 01.03.2021
https://doi.org/10.33205/cma.835582

Öz

After reviewing the interplay between frames and lower semi-frames, we introduce the notion of lower semi-frame controlled by a densely defined operator $A$ or, for short, a weak lower $A$-semi-frame and we study its properties. In particular, we compare it with that of lower atomic systems, introduced in (GB). We discuss duality properties and we suggest several possible definitions for weak $A$-upper semi-frames. Concrete examples are presented.

Kaynakça

  • S. T. Ali, J. P. Antoine and J. P. Gazeau: Continuous Frames in Hilbert Space, Ann. Physics, 222 (1993), 1–37.
  • J-P. Antoine, C. Trapani: Partial Inner Product Spaces: Theory and Applications, Lecture Notes in Mathematics, vol. 1986, Springer, Berlin (2009).
  • J-P. Antoine, P. Balazs: Frames and semi-frames, J. Phys. A: Math. Theor., 44 (2011), 205201.
  • J-P. Antoine, C. Trapani: Partial inner product spaces, metric operators and generalized hermiticity, J. Phys. A: Math. Theor., 46 (2013), 025204; Corrigendum, ibid. 46 (2013), 329501.
  • J-P. Antoine, C. Trapani: Operator (quasi-)similarity, quasi-Hermitian operators and all that, Non-Hermitian Hamiltonians in Quantum Physics, pp. 45–65; F.Bagarello, R. Passante , C.Trapani, (eds.), Springer Proceedings in Physics, vol. 184, Springer Int. Publ. Switzerland (2016).
  • J-P. Antoine, C. Trapani: Reproducing pairs of measurable functions and partial inner product spaces, Adv. Operator Th., 2 (2017), 126–146.
  • J-P. Antoine, C. Trapani: Beyond frames: Semi-frames and reproducing pairs, Mathematical Structures and Applications. STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health, T. Diagana, B. Toni (eds), Springer, Cham (2018).
  • J-P. Antoine, R. Corso and C. Trapani: Lower semi-frames and metric operators, Mediterranean J. Math., 18 (2021), 11.
  • P. Balazs, J-P. Antoine and A. Gryboś: Weighted and controlled frames: Mutual relationship and first numerical properties, Int. J. Wavelets, Multires. and Inform. Proc., 8 (2010), 109–132.
  • G. Bellomonte: Continuous frames for unbounded operators, arXiv:1912.13097 [math.FA], submitted.
  • G. Bellomonte, R. Corso: Frames and weak frames for unbounded operators, Advances in Computational Mathematics, 46 (2020), art. n. 38, 21 pp.
  • J. Bergh, J. Löfström: Interpolation Spaces. Springer, Berlin (1976).
  • R. Corso: Sesquilinear forms associated to sequences on Hilbert spaces, Monatsh. Math., 189 (2019), 625–650.
  • L. Gâvruţa: Frames for operators, Appl. Comput. Harmon. Anal., 32 (2012), 139–144.
  • G. Kaiser:A Friendly Guide to Wavelets, Birkhäuser, Boston (1994).
  • T. Kato: Perturbation Theory for Linear Operators, Springer, New York (1966).
  • W. Rudin: Functional Analysis, McGraw-Hill , New York-Düsseldorf-Johannesburg (1973).
  • K. Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space, Springer, Dordrecht (2012).
  • A.A. Zakharova: On the properties of generalized frames, Math. Notes, 83 (2008), 190–200.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Makaleler
Yazarlar

Jean Pierre Antoıne 0000-0003-1242-5199

Giorgia Bellomonte 0000-0002-9506-3623

Camillo Trapanı Bu kişi benim 0000-0001-9386-4403

Yayımlanma Tarihi 1 Mart 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Antoıne, J. P., Bellomonte, G., & Trapanı, C. (2021). Weak $A$-frames and weak $A$-semi-frames. Constructive Mathematical Analysis, 4(1), 104-118. https://doi.org/10.33205/cma.835582
AMA Antoıne JP, Bellomonte G, Trapanı C. Weak $A$-frames and weak $A$-semi-frames. CMA. Mart 2021;4(1):104-118. doi:10.33205/cma.835582
Chicago Antoıne, Jean Pierre, Giorgia Bellomonte, ve Camillo Trapanı. “Weak $A$-Frames and Weak $A$-Semi-Frames”. Constructive Mathematical Analysis 4, sy. 1 (Mart 2021): 104-18. https://doi.org/10.33205/cma.835582.
EndNote Antoıne JP, Bellomonte G, Trapanı C (01 Mart 2021) Weak $A$-frames and weak $A$-semi-frames. Constructive Mathematical Analysis 4 1 104–118.
IEEE J. P. Antoıne, G. Bellomonte, ve C. Trapanı, “Weak $A$-frames and weak $A$-semi-frames”, CMA, c. 4, sy. 1, ss. 104–118, 2021, doi: 10.33205/cma.835582.
ISNAD Antoıne, Jean Pierre vd. “Weak $A$-Frames and Weak $A$-Semi-Frames”. Constructive Mathematical Analysis 4/1 (Mart 2021), 104-118. https://doi.org/10.33205/cma.835582.
JAMA Antoıne JP, Bellomonte G, Trapanı C. Weak $A$-frames and weak $A$-semi-frames. CMA. 2021;4:104–118.
MLA Antoıne, Jean Pierre vd. “Weak $A$-Frames and Weak $A$-Semi-Frames”. Constructive Mathematical Analysis, c. 4, sy. 1, 2021, ss. 104-18, doi:10.33205/cma.835582.
Vancouver Antoıne JP, Bellomonte G, Trapanı C. Weak $A$-frames and weak $A$-semi-frames. CMA. 2021;4(1):104-18.