In this paper, we consider a linear elliptic operator $E$ with real constant coefficients of order $2m$ in two independent variables without lower order terms. For this equation, we consider linear BVPs in which the boundary operators $T_1,\ldots,T_m$ are of order $m$ and satisfy the Lopatinskii-Shapiro condition with respect to $E$. We prove boundary completeness properties for the system $\{(T_1\omega_k,\ldots, T_m\omega_k)\}$, where $\{\omega_k\}$ is a system of polynomial solutions of the equation $Eu=0$.
Completeness theorems Lopatinskii condition Elliptic equations of higher order Partial differential equations with constant coefficients
Birincil Dil | İngilizce |
---|---|
Konular | Yaklaşım Teorisi ve Asimptotik Yöntemler |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 16 Aralık 2024 |
Yayımlanma Tarihi | 16 Aralık 2024 |
Gönderilme Tarihi | 29 Ağustos 2024 |
Kabul Tarihi | 13 Kasım 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 7 Sayı: Special Issue: AT&A |