[2] Jones G.A., Singerman D. andWicks K.,The modular group and generalized Farey graphs, LondonMathematical Society, Vol:160,
316-338, (1991).
[3] Biggs N.L., White A.T., Permutation groups and combinatorial structures, Cambridge University Press, Cambridge, (1979).
[4] Akbas¸ M., Bas¸kan T., Suborbital graphs for the normalizer of G0(N), Turkish Journal of Mathematics, Vol:20, 379-387, (1996).
[5] Akbas¸ M., Singerman D.,The normalizer of G0(N) in PSL(2,R), Glasgow Mathematical Journal, Vol:32, 317-327, (1990).
[6] Akbas¸ M., Singerman D., The signature of the normalizer of G0(N), London Mathematical Society, Vol:165, 77-86, (1992).
[7] Bes¸enk M., G¨uler B.¨O., De˘ger A.H., Kader S., Conditions to be a forest for normalizer, International Journal of Mathematical
Analysis, Vol:4, 1635-1643, (2010).
[8] G¨uler B.¨O., K¨oro˘glu T., S¸anlı Z., Solutions to some congruence equations via suborbital graphs, SpringerPlus, Vol:1327, 1-11,
(2016).
[9] G¨uler B.¨O., Kader S., Self-paired edges for the normalizer, Algebras Groups and Geometries, Vol:27, 369-376, (2010).
[10] G¨uler B.¨O., Kader S., Some properties of the normalizer of G0(N) on graphs, Journal of Applied Mathematics, Statistics and
Informatics, Vol:4, 77-87, (2008).
[11] G¨uler B.¨O., Kader S., A note on genus problem and conjugation of the normalizer, New Trends in Mathematical Sciences, Vol:5,
117-122, (2017).
[12] Keskin R., Demirt¨urk B., On suborbital graphs for the normalizer of G0(N), The Electronic Journal of Combinatorics, Vol:16,
1-18, (2009).
[13] Keskin R., Suborbital graphs for the normalizer of G0(m), European Journal of Combinatorics, Vol:27, 193-206, (2006).
[14] K¨oro˘glu T., G¨uler B.¨O., S¸anlı Z., Some generalized suborbital graphs, Turkish Journal of Mathematics and Computer Science,
Vol:7, 90-95, (2017).
[15] Bes¸enk M., De˘ger A.H., G¨uler B.¨O., An application on suborbital graphs, American Institute of Physics Conference Proceedings, Vol:1470, 187-190, (2012).
[2] Jones G.A., Singerman D. andWicks K.,The modular group and generalized Farey graphs, LondonMathematical Society, Vol:160,
316-338, (1991).
[3] Biggs N.L., White A.T., Permutation groups and combinatorial structures, Cambridge University Press, Cambridge, (1979).
[4] Akbas¸ M., Bas¸kan T., Suborbital graphs for the normalizer of G0(N), Turkish Journal of Mathematics, Vol:20, 379-387, (1996).
[5] Akbas¸ M., Singerman D.,The normalizer of G0(N) in PSL(2,R), Glasgow Mathematical Journal, Vol:32, 317-327, (1990).
[6] Akbas¸ M., Singerman D., The signature of the normalizer of G0(N), London Mathematical Society, Vol:165, 77-86, (1992).
[7] Bes¸enk M., G¨uler B.¨O., De˘ger A.H., Kader S., Conditions to be a forest for normalizer, International Journal of Mathematical
Analysis, Vol:4, 1635-1643, (2010).
[8] G¨uler B.¨O., K¨oro˘glu T., S¸anlı Z., Solutions to some congruence equations via suborbital graphs, SpringerPlus, Vol:1327, 1-11,
(2016).
[9] G¨uler B.¨O., Kader S., Self-paired edges for the normalizer, Algebras Groups and Geometries, Vol:27, 369-376, (2010).
[10] G¨uler B.¨O., Kader S., Some properties of the normalizer of G0(N) on graphs, Journal of Applied Mathematics, Statistics and
Informatics, Vol:4, 77-87, (2008).
[11] G¨uler B.¨O., Kader S., A note on genus problem and conjugation of the normalizer, New Trends in Mathematical Sciences, Vol:5,
117-122, (2017).
[12] Keskin R., Demirt¨urk B., On suborbital graphs for the normalizer of G0(N), The Electronic Journal of Combinatorics, Vol:16,
1-18, (2009).
[13] Keskin R., Suborbital graphs for the normalizer of G0(m), European Journal of Combinatorics, Vol:27, 193-206, (2006).
[14] K¨oro˘glu T., G¨uler B.¨O., S¸anlı Z., Some generalized suborbital graphs, Turkish Journal of Mathematics and Computer Science,
Vol:7, 90-95, (2017).
[15] Bes¸enk M., De˘ger A.H., G¨uler B.¨O., An application on suborbital graphs, American Institute of Physics Conference Proceedings, Vol:1470, 187-190, (2012).