Research Article
BibTex RIS Cite

Bazı Çalı Türlerinin Rumen Fermentasyon Özellikleri In Vitro Koşullarda Konsantre Yem ve Polietilen Glikol İlavesi ile İyileşmektedir

Year 2022, Volume: 10 Issue: 1, 1 - 15, 25.07.2022
https://doi.org/10.33202/comuagri.1109739

Abstract

Bu çalışmanın amacını Quercus coccifera, Phillyrea latifolia, Ephedra major ve Spartium junceum çalılarından farklı örnekleme dönemlerinde alınan yaprak örneklerinin kimyasal bileşimini ve in vitro fermantasyon özelliklerini belirlemek ve in vitro inkübasyonlara polietilen glikol (PEG) ve konsantre yem (CT) ilavesinin fermantasyon kinetiği üzerine olan etkisini belirlemek oluşturmuştur. Bu amaçla çalı örnekleri Mart, Nisan, Haziran, Temmuz, Eylül ve Ekim aylarında toplanarak, kimyasal bileşim ve in vitro fermantasyon özellikleri belirlendi. Ayrıca, çalı türlerinin besleme değerinin ortaya konması açısından model hayvan olarak seçilen bir keçinin yaşama payı ve laktasyon dönemi enerji ve protein gereksinim konsantrasyonları açısından tahmin edilmiştir. Çalı örneklerinin kuru madde (KM), nötral çözücülerde çözünmeyen karbonhidrat (NDF), asit çözücülerde çözünmeyen karbonhidrat (ADF) ve toplam fenolik bileşen (TP) içerikleri örnekleme dönemleri arasında önemli ölçüde farklılık göstermiştir (P < 0.05). Quercus coccifera, Phillyrea latifolia ve Ephedra major'un kümülatif gaz üretimi, örnekleme periyotları ile önemli ölçüde değişmiştir (P < 0.05). In vitro inkübasyonlara PEG ilavesi, Quercus coccifera ve Ephedra major'un kümülatif gaz üretimini önemli ölçüde artırdığı belirlenmiştir (P < 0.05). In vitro inkübasyonlara CT ilavesi ile Ephedra major'un kümülatif gaz üretiminin önemli ölçüde arttığı bulgulanmıştır (P < 0.05). Sonuç olarak bu çalışmaya konu olan çalı türlerinin, yüksek verime sahip bir keçinin besin madde ihtiyaçlarını karşılamada yetersiz kalacağı ve özellikle proteince zengin ek yemlemeye ihtiyaç duyulacağı düşünülmektedir.

Project Number

2011/044

References

  • Akbağ, H.I., 2021. Potential nutritive value of Anagyris foetida shrubs for goats. Agroforestry Systems, 95 (1):1-10.
  • Ammar, H., L ́opez, S., Gonz ́alez, J.S., Ranilla, M.J., 2004. Seasonal variations in the chemical composition and in vitro digestibility of some Spanish leguminous shrub species. Anim. Feed Sci. Technol. 115: 327–340.
  • Ammar, H., Lopez, S., Gonzalez, J.S., 2005. Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques. Animal Feed Science and Technology, 119: 323-331.
  • Archana, A., Varsha, B., Jadhav M., Kadam, V.J., 2010. Potential of Tannins: A Review.Asian Journal of Plant Sciences, 9: 209-214.
  • Ataşoğlu, C., Şahin, S., Canbolat, Ö., Baytekin H., 2010. The effect of harvest stage on the potential nutritive value of Kermes Oak (Quercus coccifera) leaves. Livestock Research for Rural Development, 22 (2): 182-185.
  • Aydınözü D., 2008. An investigation on the distribution areas of the maquis formation in Turkey. Kastamonu Education Journal, 16 (1): 207-220.
  • Barry, T.N., McNabb, W.C., 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition, 81:163-272.
  • Ben Salem, H., Smith, T., 2008. Feeding strategies to increase. Small Ruminant Production in Dry Environments, Small Ruminant Research, 77: 174-194.
  • Ben Salem, H., Nefzaoui, A., Ben Salem, L., Ferchichi, H., Tisserand, J.L., 1997. Intake and digestion in sheep given fresh or air- dried Acacia cyanophylla Lindl. foliage. Animal Science, 68: 809-818.
  • Ben Salem, H., Saghrouni, L., Nefzaoui A., 2005. Attempts to deactivate tannins in fodder shrubs with physical and chemical treatments. Animal Feed Science and Technology, 122: 109-121.
  • Blummel, M., Becker, K., 1997. The degradability characteristics of 54 roughages and neutral detergent fibre as described by gas production and their relationship to voluntary feed Intake. British Journal of Nutrition, 77: 757-768.
  • Blummel, M., Orskov, E.R., 1993. Comparison of gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology, 40: 109-119.
  • Canbolat, Ö., Kamalak, A., Özköse, E., Özkan, C.O., Şahin, M., Karabay, P., 2005. Effect of polyethylene glycol on in vitro gas production, metabolizable energy and organic matter digestibility of Quercus cerris leaves. Lives. Res. Rur. Devel., 17 (4).
  • El Aich, A., 1991. Role of shrubs in ecosystem functions. Options Mediterraneannes Serie A Seminaries Mediterraneens, n. 16: 43-46
  • Eseceli, H., Ayaşan, T., Koç, F., Esen, V.K., Esen, S., 2020. Nutrient and Mineral Concent, and in vitro digestibility of Kermes oak (Quercus coccifera L.) and Mock Privet (Phillyrea latifolia L.). Alinteri J. of Agr. Sci, 35 (2):100-106.
  • Frutos, P., Hervas, G., Giráldez, F.J., Mantecón, A., 2004. Tannins and ruminant nutrition. Spanish Journal of Agricultural Research, 2: 191-202.
  • Getachew, G., Makkar, H., Becker, K., 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science, 139, 341-352.
  • Getachew, G., Makkar, H.P.S., Becker, K., 2001. Method of poliethylene gGlycol application to tannin-containing browses to improve microbial fermentation and efficiency of microbial protein synthesis from tannin-containing browses. Animal Feed Science and Technology 92: 51-57.
  • Haddi, M.L., Filacorda, S., Meniai, K., Rollin, F., Susmel, P., 2003. In vitro fermentation kinetics of some halophyte shrubs sampled at three stages of maturity. Animal Feed Science and Technology, 104: 215–225.
  • Jayanegara, A., Goel, G., Makkar, H., 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 209: 60-68.
  • Khan, N. A., Habib, G., Ullah, G., 2009. Chemical composition, rumen degradability, protein utilisation and lactation response to selected tree leaves as substitute of cottonseed cake in the diet of dairy goats. Animal Feed Science and Technology, 154: 160-168.
  • Khazaal, K., Dentinho, M.T., Riberio, J.M., Orskov, E.R., 1995. Prediction of apparent digestibility and voluntary intake of hays fed to sheep: comparison between using fibre components, in vitro digestibility or characteristics of gas production or nylon bag degradation. British Society of Animal Science, 61: 527-538.
  • Kökten, K., Gürsoy, O., Tukel, T., Hatipoğlu, R., 2010. Yield and Nutritive Value of Anti-Taurus Mountain Rangeland Shrubs in Turkey. Journal of Animal and Veterinary Advances, 9 (4): 716-720.
  • Lu C. D., 2011. Nutritionally Related Strategies for Organic Goat Production. Small Ruminant Research, 98: 73-82.
  • Makkar, H.P.S., Becker K., 1998. Adaptation cattle to tannins: role of protein-rich-proteins in Oak fed cattle. Animal Science, 67: 277-281.
  • Makkar, H.P.S., 2003. Quantification of tannins in tree and shrub foliage a loboratory manual. Kluwer Academic Publishers, Dordrecht/Boston/London/Netherlands.
  • Makkar, H.P.S., 2005. In vitro methods for evaluation of feeds containing phytochemicals. Animal Feed Science and Technology, 123-124: 291-302.
  • Makkar, H.P.S., Blümmel, M., Becker, K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73:897–913.
  • Mangan, J.L., 1988. Nutritional effects of tannins in animal feeds Nutr. Res. Rev.1 pp.209-231
  • Mekuriaw, S., Tsunekawa, A., Ichinohe, T., Tegegne, F., Haregeweyn, N., Nobuyuki, K., Tassew, A., Mekuriaw, Y., Walie, M., Tsubo, M., 2020. Mitigating the anti-nutritional effect of polyphenols on in vitro digestibility and fermentation characteristics of browse species in north western Ethiopia. Trop. Anim. Health Proc. 52: 1287-1298.
  • Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtain from the chemical analysis and in-vitro gas production using rumen fluid. Animal Research and Development, 28:7–55.
  • Menke, K., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93: 217-222.
  • Min, B.R., Barry, T.N., Atwood, G.T., McNabb, W.C., 2003. The Effects of Condensed Tannins on the Nutrition and Health of Ruminants Fed Fresh Temperate Forrages: A Review. Animal Feed Science and Technology, 106: 3-19.
  • Moore, K.J., Jung, H.J.G., 2001. Lignin and fiber digestion. Journal of range management, 54 (4):420-430.
  • Muller-Harvey I., 2006. Unravelling the Conundrum of Tannins in Animal Nutrition and Health. Journal of the Food and Agricultere, 86: 2010-2037.
  • Ørskov, E., McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92, 499-503.
  • Osuga, I.M., Wambui, C.C., Abdulrazak, S.A., Inhinohe, T., Fujihara, T., 2008 Evaluation of nutritional value and palatability by goats and sheep of selected browse foliages from semiarid area of Kenya.Animal Science Journal 79: 582-589.
  • Özkan, C.O., Şahin, M., 2006. Comparison of In situ Dry Matter Degradation with In vitro Gas Production of Oak Leaves Supplemented wiht or without Polyethylene Glycol (PEG). Asian-Aust. J. Anim. Sci. 19 (8): 1120-1126.
  • Papanastasis, V.P., Yiakoulaki, M.D., Decandia, M., Papanastasis-Dini, O., 2008. Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Animal Feed Science and Technology, 140: 1-17.
  • Özaslan-Parlak, A., Gökkuş, A., Hakyemez, B.H., Baytekin, H., 2011. Shrub yield and forage quality in Mediterranean shrublands of West Turkey for a period of one year. African Journal of Agricultural Research Vol. 6 (7): 1726-1734.
  • Papachristou, T.G., Nastis, A.S., Mathur, R., Hutchings, M.R., 2003. Effect of physical and chemical plant defences on herbivory: implications for Mediterranean shrubland management. Basic and Applied Ecology, 4(5): 395-403.
  • Perevolotsky, A., Landau, S., Kababya, D., Ungar, E.D., 1998. Diet selection in dairy goats grazing woody Mediterranean rangeland. Applied Animal Behaviour Sci. 57: 117–131.
  • Porter, L.J., Hrstich, L.N., Chan, B.G., 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25: 223-230.
  • Provenza, F.D., Villalba, J.J., Dziba, L.E., Atwood, S.B., Banner, R.E., 2003. Linking herbivore experience, varied diets and plant biochemical diversity. Small Ruminant Research, 49: 257-274.
  • Rogosic, J., Estell, R.E., Ivankovic, S., Kezic, J., Razov, J., 2008. Potential mechanisms to increase shrub intake and performance of small ruminants in Mediterranean shrubby ecosystems. Small Ruminant Research, 74: 1-15.
  • Rogosic, J., Pfister, J.A. Provenza, F.D., Grbesa, D., 2006. Sheep and goat preference for and nutritional value of Mediterranean shrubs. Small Ruminant Research, 64: 169-179.
  • Rogosic, J., Saric, T., Herceg, N., Zjalic, S., Stanic, S., Scobic, D., 2011. Effects of supplementation with barley and calcium hydroxide on intake of Mediterranean shrubs by goats. Italian Journal of Animal Science, 10:e 23.
  • Ryan, D.F., Bormann, F.H., 1982. Nutrient resorption in Northern hardwood forests. Bioscience 32: 29-32.
  • Salminen, J., Karonen, M., 2011. Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology, 25: 325– 338.
  • Salminen, J.P., Karonen, M., Sinkkonen, J., 2011. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem. Eur. J. 17: 2806–2816.
  • Shimada, T., 2006. Salivary proteins as a defense against dietary tannins. Journal of Chem. Ecol. 32: 1149-1163.
  • Silanikove, N., Gilboa, N., Nitsan, Z., 1997b. Interactions among tannins, supplementation and polyethylene glycol in goats fed Oak leaves. Animal Science, 64: 479-483.
  • Silanikove, N., Gilboa, N., Perevootsky, A., Nitsan, Z., 1997a. Effect of foliage-tannins on feeding activity in goats. Options Méditerranéennes: Série A, 34, 43-46.
  • Silanikove, N., Nitzan, Z., Perevolotsky, A., 1994. Effect of a daily supplementation of polyethylene glycol on intake and digestion of tannin-containing leaves (Ceratonia siliqua) by sheep. J. Agr. Food Chem. 42: 2844-2847.
  • Tölü, C., Yurtman, I. Y., Baytekin, H., Savas, T., 2012. Foraging strategies of goats in a pasture of wheat and scrubland. Animal Production Science, 52 (12):1069-1076.
  • Van Soest PJ., 1982. Nutritional ecology of the ruminant. Cornell University Press, Ithaca, NY, USA.

Concentrate and Polyethylene Glycol Supplementation in in vitro Incubations Enhance Ruminal Fermentation Characteristics of Some Shrub Species

Year 2022, Volume: 10 Issue: 1, 1 - 15, 25.07.2022
https://doi.org/10.33202/comuagri.1109739

Abstract

This study aims to determine the chemical composition and in vitro fermentation characteristics of Quercus coccifera, Phillyrea latifolia, Ephedra major, Spartium junceum leaves at different sampling periods and to determine the effect of polyethylene glycol (PEG), and concentrate feed (CT) supplementation on fermentation kinetics in in vitro incubations. Shrub samples were harvested in March, April, June, July, September and October. The chemical composition and in vitro fermentation characteristics of the shrub species were determined. Furthermore, the nutritive value of shrub species were estimated with the requirements for model goats’ maintenance and lactation periods in respect to energy and protein concentration. Dry matter (DM), neutral detergent fiber (NDF), acid detergent fiber (ADF) and total phenolic compounds (TP) concentration differed significantly among sampling periods (P < 0.05). The cumulative gas production of Quercus coccifera, Phillyrea latifolia and Ephedra major were significantly changed by sampling periods (P < 0.05). The PEG treatments significantly increased the cumulative gas production in Quercus coccifera and Ephedra major (P < 0.05). The CT treatments significantly increased cumulative gas production in Ephedra major (P < 0.05). In conclusion, it is thought that the shrub species that are the subject of this study will not be adequate to meet the nutrient needs of a high-yielding goat, and supplementary with protein-rich feeding, will be needed.

Supporting Institution

Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırmalar Koordinasyon Birimi

Project Number

2011/044

Thanks

This study was supported by the Çanakkale Onsekiz Mart University Scientific Research Project (2011/044) in Turkey for which the author is highly grateful.

References

  • Akbağ, H.I., 2021. Potential nutritive value of Anagyris foetida shrubs for goats. Agroforestry Systems, 95 (1):1-10.
  • Ammar, H., L ́opez, S., Gonz ́alez, J.S., Ranilla, M.J., 2004. Seasonal variations in the chemical composition and in vitro digestibility of some Spanish leguminous shrub species. Anim. Feed Sci. Technol. 115: 327–340.
  • Ammar, H., Lopez, S., Gonzalez, J.S., 2005. Assessment of the digestibility of some Mediterranean shrubs by in vitro techniques. Animal Feed Science and Technology, 119: 323-331.
  • Archana, A., Varsha, B., Jadhav M., Kadam, V.J., 2010. Potential of Tannins: A Review.Asian Journal of Plant Sciences, 9: 209-214.
  • Ataşoğlu, C., Şahin, S., Canbolat, Ö., Baytekin H., 2010. The effect of harvest stage on the potential nutritive value of Kermes Oak (Quercus coccifera) leaves. Livestock Research for Rural Development, 22 (2): 182-185.
  • Aydınözü D., 2008. An investigation on the distribution areas of the maquis formation in Turkey. Kastamonu Education Journal, 16 (1): 207-220.
  • Barry, T.N., McNabb, W.C., 1999. The implications of condensed tannins on the nutritive value of temperate forages fed to ruminants. British Journal of Nutrition, 81:163-272.
  • Ben Salem, H., Smith, T., 2008. Feeding strategies to increase. Small Ruminant Production in Dry Environments, Small Ruminant Research, 77: 174-194.
  • Ben Salem, H., Nefzaoui, A., Ben Salem, L., Ferchichi, H., Tisserand, J.L., 1997. Intake and digestion in sheep given fresh or air- dried Acacia cyanophylla Lindl. foliage. Animal Science, 68: 809-818.
  • Ben Salem, H., Saghrouni, L., Nefzaoui A., 2005. Attempts to deactivate tannins in fodder shrubs with physical and chemical treatments. Animal Feed Science and Technology, 122: 109-121.
  • Blummel, M., Becker, K., 1997. The degradability characteristics of 54 roughages and neutral detergent fibre as described by gas production and their relationship to voluntary feed Intake. British Journal of Nutrition, 77: 757-768.
  • Blummel, M., Orskov, E.R., 1993. Comparison of gas production and nylon bag degradability of roughages in predicting feed intake in cattle. Animal Feed Science and Technology, 40: 109-119.
  • Canbolat, Ö., Kamalak, A., Özköse, E., Özkan, C.O., Şahin, M., Karabay, P., 2005. Effect of polyethylene glycol on in vitro gas production, metabolizable energy and organic matter digestibility of Quercus cerris leaves. Lives. Res. Rur. Devel., 17 (4).
  • El Aich, A., 1991. Role of shrubs in ecosystem functions. Options Mediterraneannes Serie A Seminaries Mediterraneens, n. 16: 43-46
  • Eseceli, H., Ayaşan, T., Koç, F., Esen, V.K., Esen, S., 2020. Nutrient and Mineral Concent, and in vitro digestibility of Kermes oak (Quercus coccifera L.) and Mock Privet (Phillyrea latifolia L.). Alinteri J. of Agr. Sci, 35 (2):100-106.
  • Frutos, P., Hervas, G., Giráldez, F.J., Mantecón, A., 2004. Tannins and ruminant nutrition. Spanish Journal of Agricultural Research, 2: 191-202.
  • Getachew, G., Makkar, H., Becker, K., 2002. Tropical browses: contents of phenolic compounds, in vitro gas production and stoichiometric relationship between short chain fatty acid and in vitro gas production. The Journal of Agricultural Science, 139, 341-352.
  • Getachew, G., Makkar, H.P.S., Becker, K., 2001. Method of poliethylene gGlycol application to tannin-containing browses to improve microbial fermentation and efficiency of microbial protein synthesis from tannin-containing browses. Animal Feed Science and Technology 92: 51-57.
  • Haddi, M.L., Filacorda, S., Meniai, K., Rollin, F., Susmel, P., 2003. In vitro fermentation kinetics of some halophyte shrubs sampled at three stages of maturity. Animal Feed Science and Technology, 104: 215–225.
  • Jayanegara, A., Goel, G., Makkar, H., 2015. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Animal Feed Science and Technology, 209: 60-68.
  • Khan, N. A., Habib, G., Ullah, G., 2009. Chemical composition, rumen degradability, protein utilisation and lactation response to selected tree leaves as substitute of cottonseed cake in the diet of dairy goats. Animal Feed Science and Technology, 154: 160-168.
  • Khazaal, K., Dentinho, M.T., Riberio, J.M., Orskov, E.R., 1995. Prediction of apparent digestibility and voluntary intake of hays fed to sheep: comparison between using fibre components, in vitro digestibility or characteristics of gas production or nylon bag degradation. British Society of Animal Science, 61: 527-538.
  • Kökten, K., Gürsoy, O., Tukel, T., Hatipoğlu, R., 2010. Yield and Nutritive Value of Anti-Taurus Mountain Rangeland Shrubs in Turkey. Journal of Animal and Veterinary Advances, 9 (4): 716-720.
  • Lu C. D., 2011. Nutritionally Related Strategies for Organic Goat Production. Small Ruminant Research, 98: 73-82.
  • Makkar, H.P.S., Becker K., 1998. Adaptation cattle to tannins: role of protein-rich-proteins in Oak fed cattle. Animal Science, 67: 277-281.
  • Makkar, H.P.S., 2003. Quantification of tannins in tree and shrub foliage a loboratory manual. Kluwer Academic Publishers, Dordrecht/Boston/London/Netherlands.
  • Makkar, H.P.S., 2005. In vitro methods for evaluation of feeds containing phytochemicals. Animal Feed Science and Technology, 123-124: 291-302.
  • Makkar, H.P.S., Blümmel, M., Becker, K., 1995. Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins and their implication in gas production and true digestibility in in vitro techniques. British Journal of Nutrition, 73:897–913.
  • Mangan, J.L., 1988. Nutritional effects of tannins in animal feeds Nutr. Res. Rev.1 pp.209-231
  • Mekuriaw, S., Tsunekawa, A., Ichinohe, T., Tegegne, F., Haregeweyn, N., Nobuyuki, K., Tassew, A., Mekuriaw, Y., Walie, M., Tsubo, M., 2020. Mitigating the anti-nutritional effect of polyphenols on in vitro digestibility and fermentation characteristics of browse species in north western Ethiopia. Trop. Anim. Health Proc. 52: 1287-1298.
  • Menke, K.H., Steingass, H., 1988. Estimation of the energetic feed value obtain from the chemical analysis and in-vitro gas production using rumen fluid. Animal Research and Development, 28:7–55.
  • Menke, K., Raab, L., Salewski, A., Steingass, H., Fritz, D., Schneider, W., 1979. The estimation of the digestibility and metabolizable energy content of ruminant feeding stuffs from the gas production when they are incubated with rumen liquor in vitro. The Journal of Agricultural Science, 93: 217-222.
  • Min, B.R., Barry, T.N., Atwood, G.T., McNabb, W.C., 2003. The Effects of Condensed Tannins on the Nutrition and Health of Ruminants Fed Fresh Temperate Forrages: A Review. Animal Feed Science and Technology, 106: 3-19.
  • Moore, K.J., Jung, H.J.G., 2001. Lignin and fiber digestion. Journal of range management, 54 (4):420-430.
  • Muller-Harvey I., 2006. Unravelling the Conundrum of Tannins in Animal Nutrition and Health. Journal of the Food and Agricultere, 86: 2010-2037.
  • Ørskov, E., McDonald, I., 1979. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. The Journal of Agricultural Science, 92, 499-503.
  • Osuga, I.M., Wambui, C.C., Abdulrazak, S.A., Inhinohe, T., Fujihara, T., 2008 Evaluation of nutritional value and palatability by goats and sheep of selected browse foliages from semiarid area of Kenya.Animal Science Journal 79: 582-589.
  • Özkan, C.O., Şahin, M., 2006. Comparison of In situ Dry Matter Degradation with In vitro Gas Production of Oak Leaves Supplemented wiht or without Polyethylene Glycol (PEG). Asian-Aust. J. Anim. Sci. 19 (8): 1120-1126.
  • Papanastasis, V.P., Yiakoulaki, M.D., Decandia, M., Papanastasis-Dini, O., 2008. Integrating woody species into livestock feeding in the Mediterranean areas of Europe. Animal Feed Science and Technology, 140: 1-17.
  • Özaslan-Parlak, A., Gökkuş, A., Hakyemez, B.H., Baytekin, H., 2011. Shrub yield and forage quality in Mediterranean shrublands of West Turkey for a period of one year. African Journal of Agricultural Research Vol. 6 (7): 1726-1734.
  • Papachristou, T.G., Nastis, A.S., Mathur, R., Hutchings, M.R., 2003. Effect of physical and chemical plant defences on herbivory: implications for Mediterranean shrubland management. Basic and Applied Ecology, 4(5): 395-403.
  • Perevolotsky, A., Landau, S., Kababya, D., Ungar, E.D., 1998. Diet selection in dairy goats grazing woody Mediterranean rangeland. Applied Animal Behaviour Sci. 57: 117–131.
  • Porter, L.J., Hrstich, L.N., Chan, B.G., 1986. The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 25: 223-230.
  • Provenza, F.D., Villalba, J.J., Dziba, L.E., Atwood, S.B., Banner, R.E., 2003. Linking herbivore experience, varied diets and plant biochemical diversity. Small Ruminant Research, 49: 257-274.
  • Rogosic, J., Estell, R.E., Ivankovic, S., Kezic, J., Razov, J., 2008. Potential mechanisms to increase shrub intake and performance of small ruminants in Mediterranean shrubby ecosystems. Small Ruminant Research, 74: 1-15.
  • Rogosic, J., Pfister, J.A. Provenza, F.D., Grbesa, D., 2006. Sheep and goat preference for and nutritional value of Mediterranean shrubs. Small Ruminant Research, 64: 169-179.
  • Rogosic, J., Saric, T., Herceg, N., Zjalic, S., Stanic, S., Scobic, D., 2011. Effects of supplementation with barley and calcium hydroxide on intake of Mediterranean shrubs by goats. Italian Journal of Animal Science, 10:e 23.
  • Ryan, D.F., Bormann, F.H., 1982. Nutrient resorption in Northern hardwood forests. Bioscience 32: 29-32.
  • Salminen, J., Karonen, M., 2011. Chemical ecology of tannins and other phenolics: we need a change in approach. Functional Ecology, 25: 325– 338.
  • Salminen, J.P., Karonen, M., Sinkkonen, J., 2011. Chemical ecology of tannins: Recent developments in tannin chemistry reveal new structures and structure-activity patterns. Chem. Eur. J. 17: 2806–2816.
  • Shimada, T., 2006. Salivary proteins as a defense against dietary tannins. Journal of Chem. Ecol. 32: 1149-1163.
  • Silanikove, N., Gilboa, N., Nitsan, Z., 1997b. Interactions among tannins, supplementation and polyethylene glycol in goats fed Oak leaves. Animal Science, 64: 479-483.
  • Silanikove, N., Gilboa, N., Perevootsky, A., Nitsan, Z., 1997a. Effect of foliage-tannins on feeding activity in goats. Options Méditerranéennes: Série A, 34, 43-46.
  • Silanikove, N., Nitzan, Z., Perevolotsky, A., 1994. Effect of a daily supplementation of polyethylene glycol on intake and digestion of tannin-containing leaves (Ceratonia siliqua) by sheep. J. Agr. Food Chem. 42: 2844-2847.
  • Tölü, C., Yurtman, I. Y., Baytekin, H., Savas, T., 2012. Foraging strategies of goats in a pasture of wheat and scrubland. Animal Production Science, 52 (12):1069-1076.
  • Van Soest PJ., 1982. Nutritional ecology of the ruminant. Cornell University Press, Ithaca, NY, USA.
There are 56 citations in total.

Details

Primary Language English
Subjects Zootechny (Other)
Journal Section Articles
Authors

Hande Işıl Akbağ 0000-0002-7325-4453

Yaman Yurtman This is me 0000-0002-2368-9221

Project Number 2011/044
Publication Date July 25, 2022
Published in Issue Year 2022 Volume: 10 Issue: 1

Cite

APA Akbağ, H. I., & Yurtman, Y. (2022). Concentrate and Polyethylene Glycol Supplementation in in vitro Incubations Enhance Ruminal Fermentation Characteristics of Some Shrub Species. COMU Journal of Agriculture Faculty, 10(1), 1-15. https://doi.org/10.33202/comuagri.1109739