Araştırma Makalesi
BibTex RIS Kaynak Göster

Output Measurements of Monte Carlo, Collapse Cone and Pencil Beam Algorithms in Homogeneous and Inhomogeneous Phantom

Yıl 2019, Cilt: 5 Sayı: 2, 251 - 260, 19.12.2019
https://doi.org/10.28979/comufbed.548329

Öz

Accuracy of small
field measurements and calculation algorithms is critical for accurate
calculation of dose distribution in Radiotherapy. In inhomogeneous and
homogeneous phantoms, measurements (1x1, 2x2, 3x3, 4x4, 5x5cm
2 field
sizes) were made with CC04 and CC01 Razor ion chambers using 6MV, 6MV-FFF, 10MV
and 10MV-FFF energies. In the Monaco treatment planning system, dose
distribution was calculated by Monte Carlo-Dose to Medium (MC-Dm), Monte
Carlo-Dose to Water (MC-Dw), Collapse Cone (CC) and Pencil Beam (PB) algorithms
and compared with measurements. The homogeneous phantom water equivalent was
generated from RW3 solid phantoms, and the inhomogeneous phantom was created
using a water-equivalent RW3 solid phantom and a lung equivalent balsa phantom.
When both the homogeneous and inhomogeneous phantom measurements were evaluated
with CC04 and CC01Razor ion chambers, results consistent with MC-Dm, MC-Dw, CC
and PB were obtained. The greatest differences in both phantoms were obtained
in 1x1cm
2 fields. When the results in the inhomogeneous phantom were
compared with the results in the homogeneous phantom, the compliance ratio was
observed to be better in the homogeneous phantom. The CC01 Razor ion chamber
has a volume of 0.01cm
3 and its central electrode is graphite. With
the CC01 Razor ion chamber, reliable results were obtained. As the field size
becomes smaller, the differences between measurements and calculations increase.

Kaynakça

  • Almond P. R., Biggs P. J., Coursey B. M., Hanson W. F., Huq M. S., Nath R., Rogers D. W. O., 1999. AAPM’s TG-51 Protocol for Clinical Reference Dosimetry of High Energy Photon and Electron Beams. Med. Phys. 26 (9).
  • Bruinvis I. A. D., Keus R. B., Lenglet W. J. M., Meijer G. J., Mijnheer B. J., 2005. NCS Report 15: Quality Assurance of 3-D Treatment Planning Sysytems for External Photon and Electron Beams. From https://radiationdosimetry.org/ncs/documents/ncs-15-3d-tps-for-external-photon-and-electron-beams
  • Chen H., Lohr F., Fritz P., Wenz F., Dobler B., Lorenz F., Muhlnickel W., 2010. Stereotactic, Single-Dose Irradiation Of Lung Tumors: A Comparison Of Absolute Dose And Dose Distribution Between Pencil Beam And Monte Carlo Algorithms Based On Actual Patient CT Scans. International Journal Of Radiation Oncology Biology Physics. 78 (3): 955-963.
  • Chetty I. J., Devpura S., Liu D., Chen D., Li H., Wen N. W., Kumar S., Fraser C., Siddiqui M. S., Ajlouni M., Movsas B., 2013. Correlationofdose Computed Using Different Algorithms With Local Control Following Stereotactic Ablative Radiotherapy (SABR)-Based Treatment Of Non-Small-Cell Lung Cancer. Radiother Oncol. 109:498–504.
  • Das I. J., Ding G. X., Ahnesjö A., 2008. Small Fields: Nonequilibrium Radiation Dosimetry. Med. Phys. 35 (1).
  • Das I. J., Cheng C. W., Ahnesjö A., Gibbons J., Li X. A., Lowenstein J., Mitra R. K., Simon W. E., Zhu T. C., 2008. Accelerator Beam Data Commissioning Equipmwnt and Procedures: Report of the TG-106 of Therapy Physics Committee of the AAPM. Med. Phys.35 (9).
  • Dobler B., Walter C., Knopf A., Fabri D., Loeschel R., Polednik M., Schneider F., Wenz F., Lohr F., 2006. Optimization Of Extracranial Stereotactic Radiation Therapy Of Small Lung Lesions Using Accurate Dose Calculation Algorithms. Radiat Oncol. 1:45.
  • Fraass B., Doopke K., Hunt M., Kutcher G., Strakschall G., Dyke J. V., 1998. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality Assurance for Clinical Radiotherapy Treatment Planning. Med. Phys. 25 (10).
  • IAEA, 2017. Dosimetry of Small Static Fields Used in External Beam Radiotherapy. IEAE Technical reports series, Report 483.,ISSN 0074–1914; no. 483.
  • IAEA, 2004. Commissioning and Quality Assurance Computerized Planning Systems for Radiation Treatment of Cancer. IEAE Technical reports series, Report 430ISSN 0074–1914; no 430.
  • ICRU, 2017. Journal of the International Commission on Radiation Units and Measurements. Report 91.14 (2): 1–160. from https://doi.org/10.1093/jicru/ndx017
  • Khan F. M., 2010. The Physics Of Radiation Therapy 3rd Edition. Lippincott Williams & Wilkins Company, USA.
  • Kim S. J., Kim S. K. & Kim D. H., 2015. Journal Of The Korean Physical Society. 67: 153.Https://Doi.Org/10.3938/Jkps.67.153
  • Latifi K., Oliver J., Baker R, Dilling T. J., Stevens C. W., Kim J., Yue B., Demarco M., Zhang G., G., Fevgelman V., 2014. Study Of 201 Nonsmall Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence On Dose Calculation Algorithm. Int. J. Radiat. Oncol. Biol. Phys. 88:1108–13.
  • Lax I., Panettieri V., Wennberg B., Duch M. A., Näslund I., Baumann P., Gagliardi G., 2006. Dose Distributions In SBRT Of Lung Tumors: Comparison Between Two Different Treatment Planning Algorithms And Monte-Carlo Simulation Including Breathing Motions. Acta Oncologica. 45(7) :978-988.
  • Lu L., 2013. Dose Calculation Algorithms İn External Beam Photon Radiation Therapy. Int J Cancer Ther Oncol. 1:01025.
  • Ma C. M., Li J. S., Deng J., Fan J., 2008. Implementation Of Monte Carlo Dose Calculation For Cyberknife Treatment Planning. Journal of Physics. 102 (1).
  • Wilcox E. E., Daskalov G. M., 2008. Accuracy of Dose Measurements and Calculations Within and Beyond Heterogeneous Tissues For 6 MV Photon Fields Smaller Than 4 cm Produced by Cyberknife. Med Phys. 35: 2259-2266.

Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri

Yıl 2019, Cilt: 5 Sayı: 2, 251 - 260, 19.12.2019
https://doi.org/10.28979/comufbed.548329

Öz

Radyoterapide doz
dağılımının doğru hesaplanması için küçük alan ölçümleri ve hesaplama
algoritmalarının doğruluğu kritik öneme sahiptir. İnhomojen ortamlarda küçük
alan dozimetrisindeki belirsizlikler ve zorluklar daha da artmaktadır. Bu
çalışmada inhomojen ve homojen fantomlarda 6MV, 6MV-FFF, 10MV ve 10MV-FFF
enerjileri ile 1x1, 2x2, 3x3, 4x4, 5x5cm
2 alan boyutlarında CC04 ve
CC01 Razor iyon odaları ile ölçümler alındı. Ölçümler ile Monaco tedavi
planlama sisteminde Monte Carlo-Dose to Medium (MC-Dm), Monte Carlo-Dose to
Water (MC-Dw), Collapse Cone (CC) ve Pencil Beam (PB) algoritmaları ile yapılan
hesaplamalar karşılaştırıldı. Homojen fantom su eşdeğeri RW3 katı
fantomlardan,
  inhomojen fantom ise su
eşdeğeri RW3 katı fantom ve akciğer eşdeğeri balsa fantom kullanılarak
oluşturuldu. CC04 ve CC01 Razor iyon odaları ile hem homojen hem de inhomojen
fantomda ölçümler değerlendirildiğinde, MC-Dm, MC-Dw, CC ve PB ile uyumlu
sonuçlar elde edildi. Her iki fantomda da en büyük farklar 1x1cm
2
alanlarda olduğu görüldü. İnhomojen fantomdaki sonuçlar homojen fantomdaki
sonuçlarla karşılaştırıldığında uyum oranının homojen fantomda daha iyi olduğu
görüldü. CC01 Razor iyon odası 0.01cm
3 hacme sahip ve merkezi
elektrodu grafittir. Bu özellikleri ile CC01 Razor iyon odası ile yeterince
güvenilir sonuçlar elde edilmiştir. Alan boyutu küçüldükçe ölçümler ve
hesaplamalar arasındaki farklar artmaktadır.

Kaynakça

  • Almond P. R., Biggs P. J., Coursey B. M., Hanson W. F., Huq M. S., Nath R., Rogers D. W. O., 1999. AAPM’s TG-51 Protocol for Clinical Reference Dosimetry of High Energy Photon and Electron Beams. Med. Phys. 26 (9).
  • Bruinvis I. A. D., Keus R. B., Lenglet W. J. M., Meijer G. J., Mijnheer B. J., 2005. NCS Report 15: Quality Assurance of 3-D Treatment Planning Sysytems for External Photon and Electron Beams. From https://radiationdosimetry.org/ncs/documents/ncs-15-3d-tps-for-external-photon-and-electron-beams
  • Chen H., Lohr F., Fritz P., Wenz F., Dobler B., Lorenz F., Muhlnickel W., 2010. Stereotactic, Single-Dose Irradiation Of Lung Tumors: A Comparison Of Absolute Dose And Dose Distribution Between Pencil Beam And Monte Carlo Algorithms Based On Actual Patient CT Scans. International Journal Of Radiation Oncology Biology Physics. 78 (3): 955-963.
  • Chetty I. J., Devpura S., Liu D., Chen D., Li H., Wen N. W., Kumar S., Fraser C., Siddiqui M. S., Ajlouni M., Movsas B., 2013. Correlationofdose Computed Using Different Algorithms With Local Control Following Stereotactic Ablative Radiotherapy (SABR)-Based Treatment Of Non-Small-Cell Lung Cancer. Radiother Oncol. 109:498–504.
  • Das I. J., Ding G. X., Ahnesjö A., 2008. Small Fields: Nonequilibrium Radiation Dosimetry. Med. Phys. 35 (1).
  • Das I. J., Cheng C. W., Ahnesjö A., Gibbons J., Li X. A., Lowenstein J., Mitra R. K., Simon W. E., Zhu T. C., 2008. Accelerator Beam Data Commissioning Equipmwnt and Procedures: Report of the TG-106 of Therapy Physics Committee of the AAPM. Med. Phys.35 (9).
  • Dobler B., Walter C., Knopf A., Fabri D., Loeschel R., Polednik M., Schneider F., Wenz F., Lohr F., 2006. Optimization Of Extracranial Stereotactic Radiation Therapy Of Small Lung Lesions Using Accurate Dose Calculation Algorithms. Radiat Oncol. 1:45.
  • Fraass B., Doopke K., Hunt M., Kutcher G., Strakschall G., Dyke J. V., 1998. American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality Assurance for Clinical Radiotherapy Treatment Planning. Med. Phys. 25 (10).
  • IAEA, 2017. Dosimetry of Small Static Fields Used in External Beam Radiotherapy. IEAE Technical reports series, Report 483.,ISSN 0074–1914; no. 483.
  • IAEA, 2004. Commissioning and Quality Assurance Computerized Planning Systems for Radiation Treatment of Cancer. IEAE Technical reports series, Report 430ISSN 0074–1914; no 430.
  • ICRU, 2017. Journal of the International Commission on Radiation Units and Measurements. Report 91.14 (2): 1–160. from https://doi.org/10.1093/jicru/ndx017
  • Khan F. M., 2010. The Physics Of Radiation Therapy 3rd Edition. Lippincott Williams & Wilkins Company, USA.
  • Kim S. J., Kim S. K. & Kim D. H., 2015. Journal Of The Korean Physical Society. 67: 153.Https://Doi.Org/10.3938/Jkps.67.153
  • Latifi K., Oliver J., Baker R, Dilling T. J., Stevens C. W., Kim J., Yue B., Demarco M., Zhang G., G., Fevgelman V., 2014. Study Of 201 Nonsmall Cell Lung Cancer Patients Given Stereotactic Ablative Radiation Therapy Shows Local Control Dependence On Dose Calculation Algorithm. Int. J. Radiat. Oncol. Biol. Phys. 88:1108–13.
  • Lax I., Panettieri V., Wennberg B., Duch M. A., Näslund I., Baumann P., Gagliardi G., 2006. Dose Distributions In SBRT Of Lung Tumors: Comparison Between Two Different Treatment Planning Algorithms And Monte-Carlo Simulation Including Breathing Motions. Acta Oncologica. 45(7) :978-988.
  • Lu L., 2013. Dose Calculation Algorithms İn External Beam Photon Radiation Therapy. Int J Cancer Ther Oncol. 1:01025.
  • Ma C. M., Li J. S., Deng J., Fan J., 2008. Implementation Of Monte Carlo Dose Calculation For Cyberknife Treatment Planning. Journal of Physics. 102 (1).
  • Wilcox E. E., Daskalov G. M., 2008. Accuracy of Dose Measurements and Calculations Within and Beyond Heterogeneous Tissues For 6 MV Photon Fields Smaller Than 4 cm Produced by Cyberknife. Med Phys. 35: 2259-2266.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

İsmail Faruk Durmuş 0000-0001-6511-8104

Emine Dilara Atalay Bu kişi benim 0000-0001-8842-4331

Yayımlanma Tarihi 19 Aralık 2019
Kabul Tarihi 9 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 5 Sayı: 2

Kaynak Göster

APA Durmuş, İ. F., & Atalay, E. D. (2019). Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 251-260. https://doi.org/10.28979/comufbed.548329
AMA Durmuş İF, Atalay ED. Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. Aralık 2019;5(2):251-260. doi:10.28979/comufbed.548329
Chicago Durmuş, İsmail Faruk, ve Emine Dilara Atalay. “Monte Carlo, Collapse Cone Ve Pencil Beam Algoritmalarının Homojen Ve İnhomojen Fantomda Açık Alan Ölçümleri”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5, sy. 2 (Aralık 2019): 251-60. https://doi.org/10.28979/comufbed.548329.
EndNote Durmuş İF, Atalay ED (01 Aralık 2019) Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5 2 251–260.
IEEE İ. F. Durmuş ve E. D. Atalay, “Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri”, Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 5, sy. 2, ss. 251–260, 2019, doi: 10.28979/comufbed.548329.
ISNAD Durmuş, İsmail Faruk - Atalay, Emine Dilara. “Monte Carlo, Collapse Cone Ve Pencil Beam Algoritmalarının Homojen Ve İnhomojen Fantomda Açık Alan Ölçümleri”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi 5/2 (Aralık 2019), 251-260. https://doi.org/10.28979/comufbed.548329.
JAMA Durmuş İF, Atalay ED. Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019;5:251–260.
MLA Durmuş, İsmail Faruk ve Emine Dilara Atalay. “Monte Carlo, Collapse Cone Ve Pencil Beam Algoritmalarının Homojen Ve İnhomojen Fantomda Açık Alan Ölçümleri”. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 5, sy. 2, 2019, ss. 251-60, doi:10.28979/comufbed.548329.
Vancouver Durmuş İF, Atalay ED. Monte Carlo, Collapse Cone ve Pencil Beam Algoritmalarının Homojen ve İnhomojen Fantomda Açık Alan Ölçümleri. Çanakkale Onsekiz Mart Üniversitesi Fen Bilimleri Enstitüsü Dergisi. 2019;5(2):251-60.

 14421         download