Dirençli Yüzme Kuvvetleri ve Serbest Stil Sprint Sonuçlarına İlişkin Regresyon Tabanlı Yaklaşım
Yıl 2025,
Cilt: 8 Sayı: 4, 247 - 261, 31.12.2025
Ozan Hepözusta
,
Berkant Erman
,
Mübin Akin Ongun
,
Bahtiyar Özcaldıran
,
Mehmet Zeki Özkol
Öz
Amaç: Bu çalışma, dirençli yüzme sırasında kuvvet üretiminin 25 metrelik serbest stil sprint performansına katkısını incelemeyi amaçlamıştır. Çalışmaya 22 deneyimli amatör yüzücü katılmıştır (yaş: 22.55 ± 5,14 yıl; boy: 175.58 ± 8,91 cm; vücut ağırlığı: 75.30 ± 19,35 kg).
Yöntem: Her bir yüzücünün bireysel sprint zamanı baz alınarak, tam vuruşlu serbest stil, flutter kick (çırpınan tekme) ve kol çekişi yüzme denemeleri için dirençli testler yapılmıştır. Kuvvet verileri Biopac MP150 veri toplama sistemi kullanılarak toplanmış ve hem pik hem de ortalama güç çıktıları analiz edilmiştir.
Bulgular: Dirençli serbest stil yüzme sırasında ortalama güç ile sprint hızı arasında güçlü bir pozitif korelasyon (r = 0.78, p ≤ 0.001) olduğunu ortaya koymuştur. Ayrıca, kol çekişi denemelerinden elde edilen ortalama (r = 0.682, p ≤ 0.001) ve pik (r = 0.696, p ≤ 0.001) güç değerleri de anlamlı ilişkiler göstermiştir. Buna karşılık, çırpınan tekme denemelerinden elde edilen güç metrikleri sprint hızına daha az katkı sağlamıştır. Regresyon analizi, dirençli serbest stil yüzme sırasında ortalama gücün 25 metrelik sprint hızındaki varyansın %61,1'ini açıkladığını göstermiştir. Bu bulgular, kısa mesafe yüzme performansında süreklilik gösteren güç çıkışının kritik rolünü vurgulamaktadır. Özellikle, kol hareketlerinin itiş gücünü önemli ölçüde artırarak yüzme hızını doğrudan etkilediği bulunmuştur.
Sonuç: Dirençli yüzme antrenman protokollerinin, kısa süreli, yüksek yoğunluklu çabalarla ortalama gücün geliştirilmesine odaklanması gerektiği ortaya çıkmaktadır. Antrenman yüklerinin bireysel sprint zamanlarına göre özelleştirilmesi, antrenman verimliliğini ve performans sonuçlarını daha da iyileştirebilir.
Etik Beyan
Çalışma, Helsinki Bildirgesi'ne uygun olarak yürütülmüş ve Ege Üniversitesi Tıbbi Araştırmalar Etik Kurulu tarafından onaylanmıştır (22/06/2023; No:23-6.1T/13).
Teşekkür
Yazalar çalışmaya katılan katılımcılara teşekkür eder.
Kaynakça
-
Akis, T., & Orcan, Y. (2004). Experimental and analytical investigation of the mechanics of crawl stroke swimming. Mechanics Research Communications, 31(2), 243–261.
-
Amaro, N. M., Morouço, P. G., Marques, M. C., Fernandes, R. J., & Marinho, D. A. (2017). Biomechanical and bioenergetical evaluation of swimmers using fully-tethered swimming: A qualitative review.
-
Barbosa, A. C., Castro, F. D. S., Dopsaj, M., Cunha, S. A., & Júnior, O. A. (2013). Acute responses of biomechanical parameters to different sizes of hand paddles in front-crawl stroke. Journal of Sports Sciences, 31(9), 1015–1023.
-
Barbosa, T. M., Bragada, J. A., Reis, V. M., Marinho, D. A., Carvalho, C., & Silva, A. J. (2010). Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. Journal of Science and Medicine in Sport, 13(2), 262–269.
-
Cortesi, M., Cesaracciu, E., Sawacha, Z., & Gatta, G. (2010). Which is the recommended duration for the tethered swimming test. Biomechanics and Medicine in Swimming XI, Oslo: Norwegian School of Sport Science, 91.
-
Costill, D. L. (1986). A computer based system for measurement of force and power during front crawl swimming. Journal of Swimming Research, 2, 16–19.
-
Dominguez-Castells, R., Izquierdo, M., & Arellano, R. (2012). An updated protocol to assess arm swimming power in front crawl. International Journal of Sports Medicine, 324–329.
-
Dopsaj, M., Matković, I., & Zdravković, I. (2000). The relationship between 50m-freestyle results and characteristics of tethered forces in male sprint swimmers: A new approach to tethered swimming test. Facta Universitatis-Series: Physical Education and Sport, 1(7), 15–22.
-
Heilman, K. J., Handelman, M., Lewis, G., & Porges, S. W. (2008). Accuracy of the StressEraser® in the detection of cardiac rhythms. Applied psychophysiology and biofeedback, 33(2), 83-89.
-
Kazazović, B. (2008). Plivanje (Biomehanika, Metodika, Trenažni proces, Primjenjeno plivanje) (3rd ed.). Grafičar promet doo Sarajevo, 203–204.
-
Keskinen, K. L. (1997). Evaluation of technique performances in freestyle swimming. Kinesiology, 2(1), 30–38.
-
Keskinen, K. L. (1989). Maximum speed swimming: Interrelationships of stroking characteristics, force production and anthropometric variables. Scandinavian Journal of Sports Science, 11, 87–92.
-
Kjendlie, P. L., & Thorsvald, K. (2006). A tethered swimming power test is highly reliable. Portuguese Journal of Sport Science, 6(S2), 231–233.
-
Lynn, S. K., Watkins, C. M., Wong, M. A., Balfany, K., & Feeney, D. F. (2018). Validity and reliability of surface electromyography measurements from a wearable athlete performance system. Journal of sports science & medicine, 17(2), 205.
-
Madić, D., Okiĉić, T., Rašović, D., & Okiĉić, S. (2011). Snaga u plivanju. Sport Mont, (25–27/VIII), 359–365.
-
Magel, J. R. (1970). Propelling force measured during tethered swimming in the four competitive swimming styles. Research Quarterly, American Association for Health, Physical Education and Recreation, 41(1), 68–74.
-
Maglischo, E. (2015). Training fast twitch muscle fibers: Why and how. ResearchGate, 19, 1–30.
-
Maity, S., & Veer, K. (2024). An Approach for Evaluation and Recognition of Facial Emotions Using EMG Signal. International Journal of Sensors Wireless Communications and Control, 14(2), 113-121.
-
Morouço, P. G., Keskinen, K. L., Vilas-Boas, J. P., & Fernandes, R. J. (2011). Relationship between tethered forces and the four swimming techniques performance. Journal of Applied Biomechanics, 27(2), 161–169.
-
Morouço, P., Neiva, H., González-Badillo, J. J., Garrido, N., Marinho, D. A., & Marques, M. C. (2011a). Associations between dry land strength and power measurements with swimming performance in elite athletes: A pilot study. Journal of Human Kinetics, 29, 105.
-
Morouço, P. G., Vilas-Boas, J. P., & Fernandes, R. J. (2012). Evaluation of adolescent swimmers through a 30-s tethered test. Pediatric Exercise Science, 24(2), 312–321.
-
Muller, I., de Brito, R. M., Pereira, C. E., & Brusamarello, V. (2010). Load cells in force sensing analysis: Theory and a novel application. IEEE Instrumentation & Measurement Magazine, 13(1), 15–19.
-
Palmer, A. R., Distefano, R., Leneman, K., & Berry, D. (2020). Accuracy of the BodyGuard2 (FirstBeat) in the detection of heart rate.
-
Stager, J. M., & Coyle, M. A. (2005). Energy systems. In Handbook of Sports Medicine and Science: Swimming (pp. 1–19).
-
Toussaint, H. M., & Vervoorn, K. (1990). Effects of specific high resistance training in the water on competitive swimmers. International Journal of Sports Medicine, 11(3), 228–233.
-
Volčanšek, B., Kapus, V., & Bednarik, J. (1996). Sportsko plivanje: Plivačke tehnike i antropološka analiza plivanja. Fakultet za fizičku kulturu Sveučilišta u Zagrebu.
Volčanšek, B. (2002). Bit plivanja. Zagreb: Kineziološki fakultet Sveučilišta u Zagrebu.
Regression-Based Insights into Resisted Swimming Forces and Freestyle Sprint Outcomes
Yıl 2025,
Cilt: 8 Sayı: 4, 247 - 261, 31.12.2025
Ozan Hepözusta
,
Berkant Erman
,
Mübin Akin Ongun
,
Bahtiyar Özcaldıran
,
Mehmet Zeki Özkol
Öz
Purpose: This study aimed to investigate the contribution of force production during resistance swimming to 25-m freestyle sprint performance. Twenty-two experienced amateur swimmers participated (age: 22.55 ± 5.14 years; height: 175.58 ± 8.91 cm; body weight: 75.30 ± 19.35 kg) in this study.
Method: Based on each-athlete’s individual sprint time, resistance-based tests were conducted for full-stroke freestyle, flutter kick, and arm-pull swimming. Force data were collected using the Biopac MP150 data acquisition system, and both peak and mean power outputs were analyzed.
Results: The results revealed a strong positive correlation between mean power in resisted freestyle swimming and sprint speed (r = 0.78, p ≤ 0,001). Additionally, mean (r = 0.682, p ≤ 0,001) and peak (r = 0.696, p ≤ 0,001) power values from arm-pull trials also showed significant relationships. In contrast, power metrics derived from flutter kick trials contributed less substantially to sprint speed. Regression analysis indicated that mean power during resisted freestyle swimming explained 61.1% of the variance in 25-m sprint speed. These findings underscore the critical role of sustained power output in short-distance swimming performance. In particular, arm movements were found to significantly enhance propulsion, directly influencing swimming speed.
Conclusion: Resistance swimming training protocols should emphasize the development of mean power through short-duration, high-intensity efforts. Tailoring training loads to individual sprint times may further improve training efficiency and performance outcomes.
Etik Beyan
The study was conducted in accordance with the Declaration of Helsinki, and approved by Ege University Medical Research Ethics Committee (22/06/2023; No:23-6.1T/13).
Teşekkür
The authors would like to thank all participants of this study.
Kaynakça
-
Akis, T., & Orcan, Y. (2004). Experimental and analytical investigation of the mechanics of crawl stroke swimming. Mechanics Research Communications, 31(2), 243–261.
-
Amaro, N. M., Morouço, P. G., Marques, M. C., Fernandes, R. J., & Marinho, D. A. (2017). Biomechanical and bioenergetical evaluation of swimmers using fully-tethered swimming: A qualitative review.
-
Barbosa, A. C., Castro, F. D. S., Dopsaj, M., Cunha, S. A., & Júnior, O. A. (2013). Acute responses of biomechanical parameters to different sizes of hand paddles in front-crawl stroke. Journal of Sports Sciences, 31(9), 1015–1023.
-
Barbosa, T. M., Bragada, J. A., Reis, V. M., Marinho, D. A., Carvalho, C., & Silva, A. J. (2010). Energetics and biomechanics as determining factors of swimming performance: Updating the state of the art. Journal of Science and Medicine in Sport, 13(2), 262–269.
-
Cortesi, M., Cesaracciu, E., Sawacha, Z., & Gatta, G. (2010). Which is the recommended duration for the tethered swimming test. Biomechanics and Medicine in Swimming XI, Oslo: Norwegian School of Sport Science, 91.
-
Costill, D. L. (1986). A computer based system for measurement of force and power during front crawl swimming. Journal of Swimming Research, 2, 16–19.
-
Dominguez-Castells, R., Izquierdo, M., & Arellano, R. (2012). An updated protocol to assess arm swimming power in front crawl. International Journal of Sports Medicine, 324–329.
-
Dopsaj, M., Matković, I., & Zdravković, I. (2000). The relationship between 50m-freestyle results and characteristics of tethered forces in male sprint swimmers: A new approach to tethered swimming test. Facta Universitatis-Series: Physical Education and Sport, 1(7), 15–22.
-
Heilman, K. J., Handelman, M., Lewis, G., & Porges, S. W. (2008). Accuracy of the StressEraser® in the detection of cardiac rhythms. Applied psychophysiology and biofeedback, 33(2), 83-89.
-
Kazazović, B. (2008). Plivanje (Biomehanika, Metodika, Trenažni proces, Primjenjeno plivanje) (3rd ed.). Grafičar promet doo Sarajevo, 203–204.
-
Keskinen, K. L. (1997). Evaluation of technique performances in freestyle swimming. Kinesiology, 2(1), 30–38.
-
Keskinen, K. L. (1989). Maximum speed swimming: Interrelationships of stroking characteristics, force production and anthropometric variables. Scandinavian Journal of Sports Science, 11, 87–92.
-
Kjendlie, P. L., & Thorsvald, K. (2006). A tethered swimming power test is highly reliable. Portuguese Journal of Sport Science, 6(S2), 231–233.
-
Lynn, S. K., Watkins, C. M., Wong, M. A., Balfany, K., & Feeney, D. F. (2018). Validity and reliability of surface electromyography measurements from a wearable athlete performance system. Journal of sports science & medicine, 17(2), 205.
-
Madić, D., Okiĉić, T., Rašović, D., & Okiĉić, S. (2011). Snaga u plivanju. Sport Mont, (25–27/VIII), 359–365.
-
Magel, J. R. (1970). Propelling force measured during tethered swimming in the four competitive swimming styles. Research Quarterly, American Association for Health, Physical Education and Recreation, 41(1), 68–74.
-
Maglischo, E. (2015). Training fast twitch muscle fibers: Why and how. ResearchGate, 19, 1–30.
-
Maity, S., & Veer, K. (2024). An Approach for Evaluation and Recognition of Facial Emotions Using EMG Signal. International Journal of Sensors Wireless Communications and Control, 14(2), 113-121.
-
Morouço, P. G., Keskinen, K. L., Vilas-Boas, J. P., & Fernandes, R. J. (2011). Relationship between tethered forces and the four swimming techniques performance. Journal of Applied Biomechanics, 27(2), 161–169.
-
Morouço, P., Neiva, H., González-Badillo, J. J., Garrido, N., Marinho, D. A., & Marques, M. C. (2011a). Associations between dry land strength and power measurements with swimming performance in elite athletes: A pilot study. Journal of Human Kinetics, 29, 105.
-
Morouço, P. G., Vilas-Boas, J. P., & Fernandes, R. J. (2012). Evaluation of adolescent swimmers through a 30-s tethered test. Pediatric Exercise Science, 24(2), 312–321.
-
Muller, I., de Brito, R. M., Pereira, C. E., & Brusamarello, V. (2010). Load cells in force sensing analysis: Theory and a novel application. IEEE Instrumentation & Measurement Magazine, 13(1), 15–19.
-
Palmer, A. R., Distefano, R., Leneman, K., & Berry, D. (2020). Accuracy of the BodyGuard2 (FirstBeat) in the detection of heart rate.
-
Stager, J. M., & Coyle, M. A. (2005). Energy systems. In Handbook of Sports Medicine and Science: Swimming (pp. 1–19).
-
Toussaint, H. M., & Vervoorn, K. (1990). Effects of specific high resistance training in the water on competitive swimmers. International Journal of Sports Medicine, 11(3), 228–233.
-
Volčanšek, B., Kapus, V., & Bednarik, J. (1996). Sportsko plivanje: Plivačke tehnike i antropološka analiza plivanja. Fakultet za fizičku kulturu Sveučilišta u Zagrebu.
Volčanšek, B. (2002). Bit plivanja. Zagreb: Kineziološki fakultet Sveučilišta u Zagrebu.