A Systematic Review of the Effects of Artistic Gymnastics Training on Bone Mineral Density and Skeletal Health
Yıl 2025,
Cilt: 8 Sayı: 3, 72 - 95, 30.09.2025
Erhan Kara
,
Arif Kaan Eroğlu
Öz
Purpose: The aim of this systematic review is to identify studies examining the effects of artistic gymnastics on bone mineral density (BMD) and skeletal health, synthesize the current scientific evidence, and evaluate potential factors that may influence these effect.
Methods: This systematic review was conducted in accordance with the PRISMA guidelines, and the study selection process was guided by the PICOS criteria. The literature search included the following keywords and combinations: "exercise" or "resistance training" or "strength" or "jumping" or "hopping" and "artistic gymnasts" or "artistic gymnastics" and "mechanical loading" or "weight training" and "bone mineral density" or "bone mineral accrual" or "bone tissue" and "gymnastics and skeletal system adaptation" or "bone maturation" and "ground reaction force" or "landing" or "mount" or "dismount." A comprehensive search was conducted in the PubMed, Elsevier, Scopus, ScienceDirect, and Google Scholar databases. The methodological quality of the included studies was assessed using the modified Downs and Black checklist.
Results: The results of the included studies (n=11) show that artistic gymnastics has positive effects on BMD, and that this effect is particularly pronounced during the growth period. It has been emphasised that preserving bone mass acquired at an early age can reduce the risk of osteoporosis. Additionally, locomotor skills and cardiorespiratory fitness levels have been found to be important variables influencing osteogenic physical activity.
Conclusion: Artistic gymnastics is a form of physical activity with high osteogenic potential that not only contributes to athletic performance but also promotes both short-term bone development and long-term skeletal health. Encouraging participation in such activities during childhood and adolescence may serve as a critical public health strategy to support lifelong skeletal integrity.
Kaynakça
-
Aydın, S. (2023a). An evaluation of biomotor characteristics according to biological maturation level in 11–12 age soccer players. Revista de Gestão e Secretariado, 14(10), 19139–19149.
-
Aydın, S. (2023b). The effect of smoking on respiratory functions in athletes. Revista de Gestão e Secretariado, 14(10), 19150–19158.
-
Bailey, C. A., & Brooke-Wavell, K. (2010). Optimum frequency of exercise for bone health: Randomised controlled trial of a high-impact unilateral intervention. Bone, 46(4), 1043–1049. https://doi.org/10.1016/j.bone.2009.12.001
-
Bailey, D. A., McKay, H. A., Mirwald, R. L., Crocker, P. R., & Faulkner, R. A. (1999). A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral Accrual Study. Journal of Bone and Mineral Research, 14(10), 1672–1679. https://doi.org/10.1359/jbmr.1999.14.10.1672
-
Bass, S., Delmas, P. D., Pearce, G., Hendrich, E., Tabensky, A., & Seeman, E. (1999). The differing tempo of growth in bone size, mass, and density in girls is region-specific. Journal of Clinical Investigation, 104(6), 795–804. https://doi.org/10.1172/JCI7060
-
Bassey, E. J., & Ramsdale, S. J. (1994). Increase in femoral bone density in young women following high-impact exercise. Osteoporosis International, 4(2), 72–75. https://doi.org/10.1007/BF01623226
-
Bolam, K. A., van Uffelen, J. G., & Taaffe, D. R. (2013). The effect of physical exercise on bone density in middle-aged and older men: A systematic review. Osteoporosis International, 24(11), 2749–2762. https://doi.org/10.1007/s00198-013-2346-1
-
Burt, L. A., Naughton, G. A., Greene, D. A., & Ducher, G. (2011). Skeletal differences at the ulna and radius between pre-pubertal non-elite female gymnasts and non-gymnasts. Journal of Musculoskeletal and Neuronal Interactions, 11(3), 227–233.
-
Coşkunses, F., & Tuğcu, F. (2012). Distraksiyon osteogenezinde düşük yoğunlukta ultrason stimülasyonunun kemik mineral yoğunluğuna etkisinin DEXA ile incelemesi. Cumhuriyet Dental Journal, 15(3), 201–211. https://doi.org/10.7126/cdj.2012.1228
-
Courteix, D., Lespessailles, E., Peres, S. L., Obert, P., Germain, P., & Benhamou, C. L. (1998). Effect of physical training on bone mineral density in prepubertal girls: A comparative study between impact-loading and non-impact-loading sports. Osteoporosis International, 8(2), 152–158. https://doi.org/10.1007/BF02672512
-
Daly, R., Bass, S., & Finch, C. (2001). Balancing the risk of injury to gymnasts: How effective are the counter measures? British Journal of Sports Medicine, 35(1), 8–20. https://doi.org/10.1136/bjsm.35.1.8
-
Duckham, R. L., Baxter-Jones, A. D., Johnston, J. D., Vatanparast, H., Cooper, D., & Kontulainen, S. (2014). Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? Journal of Bone and Mineral Research, 29(2), 479–486. https://doi.org/10.1002/jbmr.2055
-
Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology & Community Health, 52(6), 377–384. https://doi.org/10.1136/jech.52.6.377
-
Egan, E., Reilly, T., Giacomoni, M., Redmond, L., & Turner, C. (2006). Bone mineral density among female sports participants. Bone, 38(2), 227–233. https://doi.org/10.1016/j.bone.2005.08.024
Exupério, I. N., Agostinete, R. R., Werneck, A. O., Maillane-Vanegas, S., Luiz-de-Marco, R., Mesquita, E. D. L.,
-
Kemper, H. C. G., & Fernandes, R. A. (2019). Impact of artistic gymnastics on bone formation marker, density and geometry in female adolescents: ABCD-Growth Study. Journal of Bone Metabolism, 26(2), 75–82. https://doi.org/10.11005/jbm.2019.26.2.75
-
Faienza, M. F., Lassandro, G., Chiarito, M., Valente, F., Ciaccia, L., & Giordano, P. (2020). How physical activity across the lifespan can reduce the impact of bone ageing: A literature review. International Journal of Environmental Research and Public Health, 17(6), 1862. https://doi.org/10.3390/ijerph17061862
-
Fuchs, R. K., Bauer, J. J., & Snow, C. M. (2001). Jumping improves hip and lumbar spine bone mass in prepubescent children: A randomized controlled trial. Journal of Bone and Mineral Research, 16(1), 148–156. https://doi.org/10.1359/jbmr.2001.16.1.148
-
Gruodyte, R., Jürimäe, J., Saar, M., Maasalu, K., & Jürimäe, T. (2009). Relationships between areal bone mineral density and jumping height in pubertal girls with different physical activity patterns. Journal of Sports Medicine and Physical Fitness, 49(4), 474–479.
-
Gruodyte-Raciene, R., Erlandson, M. C., Jackowski, S. A., & Baxter-Jones, A. D. (2013). Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: A 4-year longitudinal hip structural analysis study. Journal of Bone and Mineral Research, 28(12), 2592–2600. https://doi.org/10.1002/jbmr.1986
-
Gunter, K. B., Almstedt, H. C., & Janz, K. F. (2012). Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exercise and Sport Sciences Reviews, 40(1), 13–21. https://doi.org/10.1097/JES.0b013e318236e5ee
-
Haapala, E. A., Gråsten, A., Huhtiniemi, M., Ortega, F. B., Rantalainen, T., & Jaakkola, T. (2024). Trajectories of osteogenic physical activity in children and adolescents: A 3-year cohort study. Journal of Science and Medicine in Sport, 27(5), 319–325. https://doi.org/10.1016/j.jsams.2024.02.005
-
Jakse, B., Sekulic, D., Jakse, B., Cuk, I., & Sajber, D. (2020). Bone health among indoor female athletes and associated factors: A cross-sectional study. Research in Sports Medicine, 28(3), 314–323. https://doi.org/10.1080/15438627.2019.1696344
-
Kemper, H. C. G., Twisk, J. W. R., Koppes, L. L. J., van Mechelen, W., & Post, G. B. (2000). A 15-year physical activity pattern is positively related to bone mineral density in young adults. Journal of Bone and Mineral Research, 15(11), 2512–2521. https://doi.org/10.1359/jbmr.2000.15.11.2512
-
Maïmoun, L., Coste, O., Philibert, P., Briot, K., Mura, T., Galtier, F., Mariano-Goulart, D., Paris, F., & Sultan, C. (2013). Peripubertal female athletes in high-impact sports show improved bone mass acquisition and bone geometry. Metabolism, 62(8), 1088–1098. https://doi.org/10.1016/j.metabol.2012.11.010
-
Marin-Puyalto, J., Mäestu, J., Gomez-Cabello, A., Lätt, E., Remmel, L., Purge, P., Vicente-Rodriguez, G., & Jürimäe, J. (2019). Frequency and duration of vigorous physical activity bouts are associated with adolescent boys’ bone mineral status: A cross-sectional study. Bone, 120, 141–147. https://doi.org/10.1016/j.bone.2018.10.019
-
Markou, K. B., Mylonas, P., Theodoropoulou, A., Kontogiannis, A., Leglise, M., Vagenakis, A. G., & Georgopoulos, N. A. (2004). The influence of intensive physical exercise on bone acquisition in adolescent elite female and male artistic gymnasts. Journal of Clinical Endocrinology & Metabolism, 89(9), 4377–4383. https://doi.org/10.1210/jc.2003-031865
-
McKay, H., Tsang, G., Heinonen, A., MacKelvie, K., Sanderson, D., & Khan, K. M. (2005). Ground reaction forces associated with an effective elementary school based jumping intervention. British Journal of Sports Medicine, 39(1), 10–14. https://doi.org/10.1136/bjsm.2003.008615
-
Milanese, C., Cavedon, V., Peluso, I., Toti, E., & Zancanaro, C. (2022). The limited impact of low-volume recreational dance on three-compartment body composition and apparent bone mineral density in young girls. Children, 9(3), 391. https://doi.org/10.3390/children9030391
-
Nickols-Richardson, S. M., Modlesky, C. M., O'Connor, P. J., & Lewis, R. D. (1999). Premenarcheal gymnasts possess higher bone mineral densities than controls. Medicine and Science in Sports and Exercise, 31(4), 658–663. https://doi.org/10.1097/00005768-199904000-00011
-
Patel Nagaraja, M., & Jo, H. (2014). The role of mechanical stimulation in recovery of bone loss—High versus low magnitude and frequency of force. Life, 4(2), 117–130. https://doi.org/10.3390/life4020117
-
Pollock, N. K., Laing, E. M., Modlesky, C. M., O'Connor, P. J., & Lewis, R. D. (2006). Former college artistic gymnasts maintain higher BMD: A nine-year follow-up. Osteoporosis International, 17(11), 1691–1697. https://doi.org/10.1007/s00198-006-0181-3
-
Rico, H., Revilla, M., Villa, L. F., Hernandez, E. R., Alvarez de Buergo, M., & Villa, M. (1993). Body composition in children and Tanner’s stages: A study with dual-energy X-ray absorptiometry. Metabolism, 42(8), 967–970. https://doi.org/10.1016/0026-0495(93)90008-C
-
Rikli, R. E., & McManis, B. G. (1990). Effects of exercise on bone mineral content in postmenopausal women. Research Quarterly for Exercise and Sport, 61(3), 243–249. https://doi.org/10.1080/02701367.1990.10608686
-
Shipp, K. M. (2006). Exercise for people with osteoporosis: Translating the science into clinical practice. Current Osteoporosis Reports, 4(4), 129–133. https://doi.org/10.1007/s11914-996-0020-7
-
Sollaci, L. B., & Pereira, M. G. (2004). The introduction, methods, results, and discussion (IMRAD) structure: A fifty-year survey. Journal of the Medical Library Association, 92(3), 364–371.
-
Sööt, T., Jürimäe, T., Jürimäe, J., Gapeyeva, H., & Pääsuke, M. (2005). Relationship between leg bone mineral values and muscle strength in women with different physical activity. Journal of Bone and Mineral Metabolism, 23(5), 401–406. https://doi.org/10.1007/s00774-005-0620-9
-
Tamolienė, V., Remmel, L., Gruodyte-Raciene, R., & Jürimäe, J. (2021). Relationships of bone mineral variables with body composition, blood hormones and training volume in adolescent female athletes with different loading patterns. International Journal of Environmental Research and Public Health, 18(12), 6571. https://doi.org/10.3390/ijerph18126571
-
Vainionpää, A., Korpelainen, R., Vihriälä, E., Rinta-Paavola, A., Leppäluoto, J., & Jämsä, T. (2014). Intensity of exercise is associated with bone density change in premenopausal women. Osteoporosis International, 25(4), 1409–1417. https://doi.org/10.1007/s00198-014-2634-2
-
Vicente-Rodriguez, G., Dorado, C., Ara, I., Perez-Gomez, J., Olmedillas, H., Delgado-Guerra, S., & Calbet, J. A. (2007). Artistic versus rhythmic gymnastics: Effects on bone and muscle mass in young girls. International Journal of Sports Medicine, 28(5), 386–393. https://doi.org/10.1055/s-2006-924397
-
Weymar, M. K., Caputo, E. L., & Rombaldi, A. J. (2024). Effects of recreational artistic gymnastics on bone mineral density and content of school-age girls. Science & Sports, 39(8), 647–653. https://doi.org/10.1016/j.scispo.2024.01.003
-
Xu, J., Lombardi, G., Jiao, E., & Banfi, G. (2016). Effect of exercise on bone status in female subjects, from young girls to postmenopausal women: An overview of systematic reviews and meta-analyses. Sports Medicine, 46(8), 1165–1182. https://doi.org/10.1007/s40279-016-0494-0
-
Zanker, C. L., Osborne, C., Cooke, C. B., Oldroyd, B., & Truscott, J. G. (2004). Bone density, body composition and menstrual history of sedentary female former gymnasts, aged 20–32 years. Osteoporosis International, 15(2), 145–154. https://doi.org/10.1007/s00198-003-1524-y
-
Zhao, R., Zhao, M., & Zhang, L. (2014). Efficiency of jumping exercise in improving bone mineral density among premenopausal women: A meta-analysis. Sports Medicine, 44(10), 1393–1402. https://doi.org/10.1007/s40279-014-0220-8
Artistik Cimnastik Antrenmanlarının Kemik Mineral Yoğunluğu ve İskelet Sağlığı Üzerindeki Etkilerine İlişkin Sistematik Bir Derleme
Yıl 2025,
Cilt: 8 Sayı: 3, 72 - 95, 30.09.2025
Erhan Kara
,
Arif Kaan Eroğlu
Öz
Amaç: Bu sistematik derlemenin amacı, artistik cimnastiğin kemik mineral yoğunluğu (KMY) ve iskelet sağlığı üzerindeki etkilerini inceleyen çalışmaları belirlemek, mevcut bilimsel kanıtları sentezlemek ve bu etkileri şekillendiren olası faktörleri değerlendirmektir.
Yöntem: Bu sistematik derleme PRISMA yönergeleri doğrultusunda yürütülmüş, çalışma seçiminde PICOS kriterleri kullanılmıştır. Literatür taramasında şu anahtar kelimeler ve kombinasyonları kullanılmıştır: “egzersiz” veya “direnç antrenmanı” veya “kuvvet” veya “sıçrama” veya “atlama” ve “artistik cimnastikçiler” veya “artistik cimnastik” ve “mekanik yüklenme” veya “ağırlık antrenmanı” ve “kemik mineral yoğunluğu” veya “kemik mineral birikimi” veya “kemik dokusu” ve “cimnastik ve iskelet sistemi adaptasyonu” veya “kemik olgunlaşması” ve “zemin tepki reaksiyonu” veya “iniş” veya “başlangıç” veya “bitiriş”. PubMed, Elsevier, Scopus, Science Direct ve Google Scholar veri tabanlarında kapsamlı tarama yapılmıştır. Dahil edilen çalışmaların metodolojik kalitesi, modifiye Downs ve Black kontrol listesi ile değerlendirilmiştir.
Bulgular: Dahil edilen çalışmaların (n=11) sonuçları artistik cimnastiğin KMY üzerinde olumlu etkileri olduğunu ve bu etkinin özellikle büyüme çağında belirginleştiğini göstermektedir. Erken yaşta kazanılan kemik kütlesinin korunarak osteoporoz riskini azaltabileceği vurgulanmıştır. Ayrıca, lokomotor beceriler ve kardiyorespiratuvar uygunluk düzeylerinin osteojenik fiziksel aktiviteyi etkileyen önemli değişkenler olduğu bulunmuştur.
Sonuç: Artistik cimnastik, çocukluk ve ergenlik döneminde hem kısa vadeli kemik gelişimini destekleyen hem de yaşam boyu iskelet sağlığına katkı sağlayan yüksek osteojenik potansiyele sahip bir egzersiz türüdür.
Etik Beyan
Bu çalışma, yalnızca daha önce yayımlanmış ve kamuya açık bilimsel literatürün sistematik olarak incelenmesini içermektedir. İnsan katılımcılardan doğrudan veri toplanmadığı ve kişisel veri içeren herhangi bir müdahale veya deneysel işlem gerçekleştirilmediği için etik kurul onayı gerekmemektedir. Sistematik derlemelerde etik kurul onayı, yalnızca insan denekleriyle doğrudan temas veya hassas veri kullanımı söz konusu olduğunda talep edilmektedir. Bu bağlamda, çalışmamız yürürlükteki etik kurallar ve yönergelerle uyumlu olduüğunu saygılarımla arz ederim.
Kaynakça
-
Aydın, S. (2023a). An evaluation of biomotor characteristics according to biological maturation level in 11–12 age soccer players. Revista de Gestão e Secretariado, 14(10), 19139–19149.
-
Aydın, S. (2023b). The effect of smoking on respiratory functions in athletes. Revista de Gestão e Secretariado, 14(10), 19150–19158.
-
Bailey, C. A., & Brooke-Wavell, K. (2010). Optimum frequency of exercise for bone health: Randomised controlled trial of a high-impact unilateral intervention. Bone, 46(4), 1043–1049. https://doi.org/10.1016/j.bone.2009.12.001
-
Bailey, D. A., McKay, H. A., Mirwald, R. L., Crocker, P. R., & Faulkner, R. A. (1999). A six-year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: The University of Saskatchewan Bone Mineral Accrual Study. Journal of Bone and Mineral Research, 14(10), 1672–1679. https://doi.org/10.1359/jbmr.1999.14.10.1672
-
Bass, S., Delmas, P. D., Pearce, G., Hendrich, E., Tabensky, A., & Seeman, E. (1999). The differing tempo of growth in bone size, mass, and density in girls is region-specific. Journal of Clinical Investigation, 104(6), 795–804. https://doi.org/10.1172/JCI7060
-
Bassey, E. J., & Ramsdale, S. J. (1994). Increase in femoral bone density in young women following high-impact exercise. Osteoporosis International, 4(2), 72–75. https://doi.org/10.1007/BF01623226
-
Bolam, K. A., van Uffelen, J. G., & Taaffe, D. R. (2013). The effect of physical exercise on bone density in middle-aged and older men: A systematic review. Osteoporosis International, 24(11), 2749–2762. https://doi.org/10.1007/s00198-013-2346-1
-
Burt, L. A., Naughton, G. A., Greene, D. A., & Ducher, G. (2011). Skeletal differences at the ulna and radius between pre-pubertal non-elite female gymnasts and non-gymnasts. Journal of Musculoskeletal and Neuronal Interactions, 11(3), 227–233.
-
Coşkunses, F., & Tuğcu, F. (2012). Distraksiyon osteogenezinde düşük yoğunlukta ultrason stimülasyonunun kemik mineral yoğunluğuna etkisinin DEXA ile incelemesi. Cumhuriyet Dental Journal, 15(3), 201–211. https://doi.org/10.7126/cdj.2012.1228
-
Courteix, D., Lespessailles, E., Peres, S. L., Obert, P., Germain, P., & Benhamou, C. L. (1998). Effect of physical training on bone mineral density in prepubertal girls: A comparative study between impact-loading and non-impact-loading sports. Osteoporosis International, 8(2), 152–158. https://doi.org/10.1007/BF02672512
-
Daly, R., Bass, S., & Finch, C. (2001). Balancing the risk of injury to gymnasts: How effective are the counter measures? British Journal of Sports Medicine, 35(1), 8–20. https://doi.org/10.1136/bjsm.35.1.8
-
Duckham, R. L., Baxter-Jones, A. D., Johnston, J. D., Vatanparast, H., Cooper, D., & Kontulainen, S. (2014). Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? Journal of Bone and Mineral Research, 29(2), 479–486. https://doi.org/10.1002/jbmr.2055
-
Downs, S. H., & Black, N. (1998). The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology & Community Health, 52(6), 377–384. https://doi.org/10.1136/jech.52.6.377
-
Egan, E., Reilly, T., Giacomoni, M., Redmond, L., & Turner, C. (2006). Bone mineral density among female sports participants. Bone, 38(2), 227–233. https://doi.org/10.1016/j.bone.2005.08.024
Exupério, I. N., Agostinete, R. R., Werneck, A. O., Maillane-Vanegas, S., Luiz-de-Marco, R., Mesquita, E. D. L.,
-
Kemper, H. C. G., & Fernandes, R. A. (2019). Impact of artistic gymnastics on bone formation marker, density and geometry in female adolescents: ABCD-Growth Study. Journal of Bone Metabolism, 26(2), 75–82. https://doi.org/10.11005/jbm.2019.26.2.75
-
Faienza, M. F., Lassandro, G., Chiarito, M., Valente, F., Ciaccia, L., & Giordano, P. (2020). How physical activity across the lifespan can reduce the impact of bone ageing: A literature review. International Journal of Environmental Research and Public Health, 17(6), 1862. https://doi.org/10.3390/ijerph17061862
-
Fuchs, R. K., Bauer, J. J., & Snow, C. M. (2001). Jumping improves hip and lumbar spine bone mass in prepubescent children: A randomized controlled trial. Journal of Bone and Mineral Research, 16(1), 148–156. https://doi.org/10.1359/jbmr.2001.16.1.148
-
Gruodyte, R., Jürimäe, J., Saar, M., Maasalu, K., & Jürimäe, T. (2009). Relationships between areal bone mineral density and jumping height in pubertal girls with different physical activity patterns. Journal of Sports Medicine and Physical Fitness, 49(4), 474–479.
-
Gruodyte-Raciene, R., Erlandson, M. C., Jackowski, S. A., & Baxter-Jones, A. D. (2013). Structural strength development at the proximal femur in 4- to 10-year-old precompetitive gymnasts: A 4-year longitudinal hip structural analysis study. Journal of Bone and Mineral Research, 28(12), 2592–2600. https://doi.org/10.1002/jbmr.1986
-
Gunter, K. B., Almstedt, H. C., & Janz, K. F. (2012). Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exercise and Sport Sciences Reviews, 40(1), 13–21. https://doi.org/10.1097/JES.0b013e318236e5ee
-
Haapala, E. A., Gråsten, A., Huhtiniemi, M., Ortega, F. B., Rantalainen, T., & Jaakkola, T. (2024). Trajectories of osteogenic physical activity in children and adolescents: A 3-year cohort study. Journal of Science and Medicine in Sport, 27(5), 319–325. https://doi.org/10.1016/j.jsams.2024.02.005
-
Jakse, B., Sekulic, D., Jakse, B., Cuk, I., & Sajber, D. (2020). Bone health among indoor female athletes and associated factors: A cross-sectional study. Research in Sports Medicine, 28(3), 314–323. https://doi.org/10.1080/15438627.2019.1696344
-
Kemper, H. C. G., Twisk, J. W. R., Koppes, L. L. J., van Mechelen, W., & Post, G. B. (2000). A 15-year physical activity pattern is positively related to bone mineral density in young adults. Journal of Bone and Mineral Research, 15(11), 2512–2521. https://doi.org/10.1359/jbmr.2000.15.11.2512
-
Maïmoun, L., Coste, O., Philibert, P., Briot, K., Mura, T., Galtier, F., Mariano-Goulart, D., Paris, F., & Sultan, C. (2013). Peripubertal female athletes in high-impact sports show improved bone mass acquisition and bone geometry. Metabolism, 62(8), 1088–1098. https://doi.org/10.1016/j.metabol.2012.11.010
-
Marin-Puyalto, J., Mäestu, J., Gomez-Cabello, A., Lätt, E., Remmel, L., Purge, P., Vicente-Rodriguez, G., & Jürimäe, J. (2019). Frequency and duration of vigorous physical activity bouts are associated with adolescent boys’ bone mineral status: A cross-sectional study. Bone, 120, 141–147. https://doi.org/10.1016/j.bone.2018.10.019
-
Markou, K. B., Mylonas, P., Theodoropoulou, A., Kontogiannis, A., Leglise, M., Vagenakis, A. G., & Georgopoulos, N. A. (2004). The influence of intensive physical exercise on bone acquisition in adolescent elite female and male artistic gymnasts. Journal of Clinical Endocrinology & Metabolism, 89(9), 4377–4383. https://doi.org/10.1210/jc.2003-031865
-
McKay, H., Tsang, G., Heinonen, A., MacKelvie, K., Sanderson, D., & Khan, K. M. (2005). Ground reaction forces associated with an effective elementary school based jumping intervention. British Journal of Sports Medicine, 39(1), 10–14. https://doi.org/10.1136/bjsm.2003.008615
-
Milanese, C., Cavedon, V., Peluso, I., Toti, E., & Zancanaro, C. (2022). The limited impact of low-volume recreational dance on three-compartment body composition and apparent bone mineral density in young girls. Children, 9(3), 391. https://doi.org/10.3390/children9030391
-
Nickols-Richardson, S. M., Modlesky, C. M., O'Connor, P. J., & Lewis, R. D. (1999). Premenarcheal gymnasts possess higher bone mineral densities than controls. Medicine and Science in Sports and Exercise, 31(4), 658–663. https://doi.org/10.1097/00005768-199904000-00011
-
Patel Nagaraja, M., & Jo, H. (2014). The role of mechanical stimulation in recovery of bone loss—High versus low magnitude and frequency of force. Life, 4(2), 117–130. https://doi.org/10.3390/life4020117
-
Pollock, N. K., Laing, E. M., Modlesky, C. M., O'Connor, P. J., & Lewis, R. D. (2006). Former college artistic gymnasts maintain higher BMD: A nine-year follow-up. Osteoporosis International, 17(11), 1691–1697. https://doi.org/10.1007/s00198-006-0181-3
-
Rico, H., Revilla, M., Villa, L. F., Hernandez, E. R., Alvarez de Buergo, M., & Villa, M. (1993). Body composition in children and Tanner’s stages: A study with dual-energy X-ray absorptiometry. Metabolism, 42(8), 967–970. https://doi.org/10.1016/0026-0495(93)90008-C
-
Rikli, R. E., & McManis, B. G. (1990). Effects of exercise on bone mineral content in postmenopausal women. Research Quarterly for Exercise and Sport, 61(3), 243–249. https://doi.org/10.1080/02701367.1990.10608686
-
Shipp, K. M. (2006). Exercise for people with osteoporosis: Translating the science into clinical practice. Current Osteoporosis Reports, 4(4), 129–133. https://doi.org/10.1007/s11914-996-0020-7
-
Sollaci, L. B., & Pereira, M. G. (2004). The introduction, methods, results, and discussion (IMRAD) structure: A fifty-year survey. Journal of the Medical Library Association, 92(3), 364–371.
-
Sööt, T., Jürimäe, T., Jürimäe, J., Gapeyeva, H., & Pääsuke, M. (2005). Relationship between leg bone mineral values and muscle strength in women with different physical activity. Journal of Bone and Mineral Metabolism, 23(5), 401–406. https://doi.org/10.1007/s00774-005-0620-9
-
Tamolienė, V., Remmel, L., Gruodyte-Raciene, R., & Jürimäe, J. (2021). Relationships of bone mineral variables with body composition, blood hormones and training volume in adolescent female athletes with different loading patterns. International Journal of Environmental Research and Public Health, 18(12), 6571. https://doi.org/10.3390/ijerph18126571
-
Vainionpää, A., Korpelainen, R., Vihriälä, E., Rinta-Paavola, A., Leppäluoto, J., & Jämsä, T. (2014). Intensity of exercise is associated with bone density change in premenopausal women. Osteoporosis International, 25(4), 1409–1417. https://doi.org/10.1007/s00198-014-2634-2
-
Vicente-Rodriguez, G., Dorado, C., Ara, I., Perez-Gomez, J., Olmedillas, H., Delgado-Guerra, S., & Calbet, J. A. (2007). Artistic versus rhythmic gymnastics: Effects on bone and muscle mass in young girls. International Journal of Sports Medicine, 28(5), 386–393. https://doi.org/10.1055/s-2006-924397
-
Weymar, M. K., Caputo, E. L., & Rombaldi, A. J. (2024). Effects of recreational artistic gymnastics on bone mineral density and content of school-age girls. Science & Sports, 39(8), 647–653. https://doi.org/10.1016/j.scispo.2024.01.003
-
Xu, J., Lombardi, G., Jiao, E., & Banfi, G. (2016). Effect of exercise on bone status in female subjects, from young girls to postmenopausal women: An overview of systematic reviews and meta-analyses. Sports Medicine, 46(8), 1165–1182. https://doi.org/10.1007/s40279-016-0494-0
-
Zanker, C. L., Osborne, C., Cooke, C. B., Oldroyd, B., & Truscott, J. G. (2004). Bone density, body composition and menstrual history of sedentary female former gymnasts, aged 20–32 years. Osteoporosis International, 15(2), 145–154. https://doi.org/10.1007/s00198-003-1524-y
-
Zhao, R., Zhao, M., & Zhang, L. (2014). Efficiency of jumping exercise in improving bone mineral density among premenopausal women: A meta-analysis. Sports Medicine, 44(10), 1393–1402. https://doi.org/10.1007/s40279-014-0220-8