Derleme
BibTex RIS Kaynak Göster

Sirkadiyen Ritim ve Bağırsak Mikrobiyotası: Sağlığın Senkronize Uyumu

Yıl 2025, Cilt: 6 Sayı: 2, 81 - 92, 30.09.2025

Öz

Bağırsak mikrobiyotası, insan sağlığında kritik bir rol oynamaktadır. Mikrobiyota, bağışıklık
sisteminin gelişimi, olgunlaşması ve işleyişi gibi birçok fizyolojik süreci modüle ederek sağlığı
etkilemektedir. Mikrobiyotanın kompozisyonu; yaş, cinsiyet, beslenme, stres ve özellikle sirkadiyen
ritim gibi faktörlerden etkilenmektedir. Son yıllarda, sirkadiyen ritmin bağırsak mikrobiyotası ile
çift yönlü bir ilişkide olduğu ortaya çıkmıştır. Sirkadiyen ritim, vücuttaki biyolojik süreçlerin 24
saatlik döngülerle senkronize olmasını sağlamaktadır. Mikrobiyota, sirkadiyen gen ekspresyonunu
etkilerken, sirkadiyen ritim de mikrobiyal kompozisyonu değiştirebilmektedir. Bu etkileşim;
obezite, tip 2 diyabet, kardiyovasküler hastalıklar ve nörodejeneratif bozukluklar gibi kronik
hastalıkların gelişiminde önemli rol oynamaktadır. Bu derlemede, mikrobiyota ve sirkadiyen ritmin
genel özellikleri sunularak, özellikle kardiyometabolik hastalıklar bağlamında aralarındaki
etkileşimin olası mekanizmaları ele alınmıştır.

Kaynakça

  • Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400. doi:10.1038/nm.4517
  • Cryan JF, O'Riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99(4):1877-2013. doi:10.1152/physrev.00018.2018
  • Zahran SA, Ali-Tammam M, Ali AE, Aziz RK. Compositional variation of the human fecal microbiome in relation to azo-reducing activity: a pilot study. Gut Pathog. 2021;13(1):58. Published 2021 Oct 8. doi:10.1186/s13099-021-00454-0
  • Cheng J, Ringel-Kulka T, Heikamp-de Jong I, et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 2016;10(4):1002-1014. doi:10.1038/ismej.2015.177
  • Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016; 14:e1002533.
  • Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. Published 2015 Feb 2. doi:10.3402/mehd.v26.26191
  • Pearson JA, Wong FS, Wen L. Crosstalk between circadian rhythms and the microbiota. Immunology. 2020;161(4):278-290. doi:10.1111/imm.13278
  • Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes. 2012;3(3):203-220. doi:10.4161/gmic.20169
  • Kozyrskyj AL, Bridgman SL, Tun HM. Microbiota in health and disease: from pregnancy to childhood. In: Browne PD, Claassen E, Cabana MD, editors. Microbiota in health and disease: from pregnancy to childhood. 2017. p. 79–104.
  • Dubos R, Schaedler RW, Costello RL. The effect of antibacterial drugs on the weight of mice. J Exp Med. 1963;117:245–257. doi:10.1084/jem.117.2.245
  • Pérez-Cano FJ. Mediterranean Diet, Microbiota and Immunity. Nutrients. 2022;14(2):273.
  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-563. doi:10.1038/nature12820
  • Duncanson K, Williams G, Hoedt EC, Collins CE, Keely S, Talley NJ. Diet-microbiota associations in gastrointestinal research: a systematic review. Gut Microbes. 2024;16(1):2350785. doi:10.1080/19490976.2024.2350785.
  • Wu YT, Shen SJ, Liao KF, Huang CY. Dietary plant and animal protein sources oppositely modulate fecal Bilophila and Lachnoclostridium in vegetarians and omnivores. Microbiol Spectr. 2022;10(2):e0204721. doi:10.1128/spectrum.02047-21.
  • Cândido TLN, da Silva LE, Tavares JF, Conti ACM, Rizzardo RAG, Gonçalves Alfenas R de C. Effects of dietary fat quality on metabolic endotoxaemia: a systematic review. British Journal of Nutrition. 2020;124(7):654-667. doi:10.1017/S0007114520001658
  • Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.
  • Agusti A, Lamers F, Tamayo M, Benito-Amat C, Molina-Mendoza GV, Penninx BWJH, Sanz Y. The Gut Microbiome in Early Life Stress: A Systematic Review. Nutrients. 2023;15(11):2566.
  • Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340. doi:10.1016/j.smrv.2020.101340
  • Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian Rhythm and the Gut Microbiome. Int Rev Neurobiol. 2016;131:193-205. doi:10.1016/bs.irn.2016.07.002
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164-179. doi:10.1038/nrg.2016.150
  • Teichman EM, O'Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell Metab. 2020;31(3):448-471. doi:10.1016/j.cmet.2020.02.008
  • Bischoff SC. Microbiota and aging. Curr Opin Clin Nutr Metab Care. 2016;19(1):26-30. doi:10.1097/MCO.0000000000000242
  • Cohen SE, Golden SS. Circadian Rhythms in Cyanobacteria. Microbiol Mol Biol Rev. 2015;79(4):373-385. doi:10.1128/MMBR.00036-15
  • Paulose JK, Cassone VM. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes. Gut Microbes. 2016;7(5):424-427. doi:10.1080/19490976.2016.1208892
  • Deaver JA, Eum SY, Toborek M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol. 2018;9:737. doi:10.3389/fmicb.2018.00737.
  • Parkar SG, Kalsbeek A, Cheeseman JF. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms. 2019;7(2):41. doi:10.3390/microorganisms7020041.
  • Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514-529. doi:10.1016/j.cell.2014.09.048
  • Heddes M, Altaha B, Niu Y, Reitmeier S, Kleigrewe K, Haller D, Kiessling S. The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat Commun. 2022;13:6068. doi:10.1038/s41467-022-33609-x.
  • Mitjavila MT, Moreno JJ. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem Pharmacol. 2012;84(9):1113-1122. doi:10.1016/j.bcp.2012.07.017
  • Pounis G, Costanzo S, Bonaccio M, et al. Reduced mortality risk by a polyphenol-rich diet: An analysis from the Moli-sani study. Nutrition. 2018;48:87-95. doi:10.1016/j.nut.2017.11.012
  • Pan IH, Lai CS, Wu JC, Ho CT. Epigenetic and disease targets by polyphenols. Curr Pharm Des. 2013;19(34):5703-5716. doi:10.2174/1381612811319340010.
  • Borsoi FT, Neri-Numa IA, Oliveira WQ de, Araújo FF de, Pastore GM. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem Mol Sci. 2023;6:100155. doi:10.1016/j.fochms.2022.100155.
  • Tresserra‐Rimbau A, Rimm E., Medina‐Remón A, Martínez‐González MA, et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. NMCD., 2014;24:639–647. https://doi.org/10.1016/j.numecd. 2013.12.014
  • Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol. 2020;177(6):1278-1293. doi:10.1111/bph.14850
  • Qi G, Mi Y, Liu Z, Fan R et al. Dietary tea polyphenols ameliorate metabolic syndrome and memory impairment via circadian clock related mechanisms. J. Funct.Foods. 2017;34:168–180. https://doi.org/10.1016/j.jff.2017.04.031
  • Kiouptsi K, Reinhardt C. Contribution of the commensal microbiota to atherosclerosis and arterial thrombosis. Br J Pharmacol. 2018;175(24):4439-4449. doi:10.1111/bph.14483
  • Jäckel S, Kiouptsi K, Lillich M, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood. 2017;130(4):542-553. doi:10.1182/blood-2016-11-754416
  • Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5(1):54. Published 2017 May 15. doi:10.1186/s40168-017-0271-9
  • Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015;163(7):1585-1595. doi:10.1016/j.cell.2015.11.055
  • Paschos GK, FitzGerald GA. Circadian clocks and vascular function. Circ Res. 2010;106(5):833-841. doi:10.1161/CIRCRESAHA.109.211706
  • Farajnia S, Deboer T, Rohling JH, Meijer JH, Michel S. Aging of the suprachiasmatic clock. Neuroscientist. 2014;20(1):44-55. doi:10.1177/1073858413498936
  • Anea CB, Zhang M, Stepp DW, et al. Vascular disease in mice with a dysfunctional circadian clock. Circulation. 2009;119(11):1510-1517. doi:10.1161/CIRCULATIONAHA.108.827477
  • Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043-1045. doi:10.1126/science.1108750
  • Mistry P, Reitz CJ, Khatua TN, Rasouli M, Oliphant K, Young ME, Allen-Vercoe E, Martino TA. Circadian influence on the microbiome improves heart failure outcomes. J Mol Cell Cardiol. 2020;149:54–72. doi:10.1016/j.yjmcc.2020.09.006.
  • Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: The role of bioavailability. Nutrients. 2021;13(1):273. doi:10.3390/nu13010273.
  • Aatif M. Current understanding of polyphenols to enhance bioavailability for better therapies. Biomedicines. 2023;11(7):2078. doi:10.3390/biomedicines11072078.
  • Kawabata K, Yoshioka Y, Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules. 2019;24(2):370. doi:10.3390/molecules24020370
  • Plamada D, Vodnar DC. Polyphenols-gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients. 2021;14(1):137. doi:10.3390/nu14010137
  • Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients. 2016;8(2):78. doi:10.3390/nu8020078
  • Rodríguez-Daza MC, de Vos WM. Polyphenols as drivers of a homeostatic gut microecology and immuno-metabolic traits of Akkermansia muciniphila: From mouse to man. Int J Mol Sci. 2022;24(1):45. doi:10.3390/ijms24010045
  • Tahara Y, Yamazaki M, Sukigara H, et al. Gut microbiota-derived short chain fatty acids ınduce circadian clock entrainment in mouse peripheral tissues. sci rep. 2018;8(1):1395. doi:10.1038/s41598-018-19836-7
  • Rasouli-Saravani A, Jahankhani K, Moradi S, et al. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother. 2023;162:114620. doi:10.1016/j.biopha.2023.114620
  • Choi H, Rao MC, Chang EB. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol. 2021;18(10):679-689. doi:10.1038/s41575-021-00452-2
  • Pascual-Serrano A, Arola-Arnal A, Suárez-García S, et al. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. Int J Obes (Lond). 2017;41(8):1246-1255. doi:10.1038/ijo.2017.90
  • Liu M, Yun P, Hu Y, Yang J, Khadka RB, Peng X. Effects of Grape Seed Proanthocyanidin Extract on Obesity. Obes Facts. 2020;13(2):279-291. doi:10.1159/000502235
  • Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets. 2007;7(2):135-144. doi:10.2174/187152907780830905
  • Mi Y, Qi G, Fan R, Ji X, Liu Z, Liu X. EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1575-1589. doi:10.1016/j.bbadis.2017.04.009
  • Ushiroda C, Naito Y, Takagi T, et al. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet-fed mice. J Clin Biochem Nutr. 2019;65(1):34-46. doi:10.3164/jcbn.18-116
  • Cai S, Xie LW, Xu JY, et al. (-)-Epigallocatechin-3-Gallate (EGCG) Modulates the Composition of the Gut Microbiota to Protect Against Radiation-Induced Intestinal Injury in Mice. Front Oncol. 2022;12:848107.. doi:10.3389/fonc.2022.848107
  • Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol. 2017;174(12):1633-1646. doi:10.1111/bph.13492
  • Oike H, Kobori M. Resveratrol regulates circadian clock genes in Rat-1 fibroblast cells. Biosci Biotechnol Biochem. 2008;72(11):3038-3040. doi:10.1271/bbb.80426
  • Bai B, Man AW, Yang K, et al. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget. 2016;7(26):39065-39081. doi:10.18632/oncotarget.9687
  • Knutsson A, Kempe A. Shift work and diabetes-a systematic review. Chronobiol. Int. 2014;31(10):1146–1151.
  • Rosenfeld CS. Homage to the “H” in developmental origins of health and disease.J Dev Orig Health Dis. 2017;8(1):8–29.
  • Mukherji A, Kobiita A, Chambon P. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci U S A. 2015;112(48):E6683-E6690. doi:10.1073/pnas.1519735112
  • Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100-2102. doi:10.1038/oby.2009.264
  • Jakubowicz D, Wainstein J, Ahren B, Landau Z, Bar-Dayan Y, Froy O. Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care. 2015;38(10):1820-1826. doi:10.2337/dc15-0761
  • Jakubowicz D, Wainstein J, Landau Z, et al. Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals With Diabetes: A Randomized Clinical Trial. Diabetes Care. 2017;40(11):1573-1579. doi:10.2337/dc16-2753
  • Wu T, Sun L, ZhuGe F, et al. Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology. Chronobiol Int. 2011;28(10):890-903. doi:10.3109/07420528.2011.622599
  • Zhou L, Kang L, Xiao X, Jia L, Zhang Q, Deng M. "Gut Microbiota-Circadian Clock Axis" in Deciphering the Mechanism Linking Early-Life Nutritional Environment and Abnormal Glucose Metabolism. Int J Endocrinol. 2019;2019:5893028. Published 2019 Aug 27. doi:10.1155/2019/5893028
  • Wang D, Chen S, Liu M, Liu C. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver. Chronobiol Int. 2015;32(5):615-626. doi:10.3109/07420528.2015.1025958
  • Li Y, Zhang J, Ma H, et al. The role of short-chain fatty acids from gut microbiota in hypertension. Front Microbiol. 2021;12:730809. doi:10.3389/fmicb.2021.730809
  • Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-1517. doi:10.2337/db08-1637
  • Beckers KF, Flanagan JP, Sones JL. Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. Int J Obes (Lond). 2024;48(4):439-448. doi:10.1038/s41366-023-01438-7
  • Li Y, Shao L, Mou Y, Zhang Y, Ping Y. Sleep, circadian rhythm and gut microbiota: alterations in Alzheimer's disease and their potential links in the pathogenesis. Gut Microbes. 2021;13(1):1957407. doi:10.1080/19490976.2021.1957407
  • Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189-200. doi:10.1080/19490976.2015.1134082
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325-2340. doi:10.1194/jlr.R036012
  • Carvalho BM, Guadagnini D, Tsukumo DML, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823-2834. doi:10.1007/s00125-012-2648-4
  • Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120. Published 2017 May 22. doi:10.1186/s12866-017-1027-1
  • Poroyko VA, Carreras A, Khalfya A et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6: 35405.
  • Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribution of Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms. 2020;8(3):416.
  • Kootte RS, Levin E, Salojärvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611-619.e6. doi:10.1016/j.cmet.2017.09.008
  • Bishehsari F, Engen PA, Voigt RM, et al. Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol. 2020;9(2):219-237. doi:10.1016/j.jcmgh.2019.10.011
  • Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177-185. doi:10.1038/nature21363
  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8. https://doi.org/10.1001/jamaneurol.2013.5847
  • Nuzum ND, Loughman A, Szymlek-Gay EA, Hendy A, Teo WP, Macpherson H. Gut microbiota differences between healthy older adults and individuals with Parkinson's disease: A systematic review. Neurosci Biobehav Rev. 2020;112:227-241. doi:10.1016/j.neubiorev.2020.02.003
  • Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19(2):179-194. doi:10.1016/S1474-4422(19)30356-4
  • Li B, He Y, Ma J, et al. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimers Dement. 2019;15(10):1357-1366. doi:10.1016/j.jalz.2019.07.002
  • Holth J, Patel T, Holtzman DM. Sleep in Alzheimer's Disease - Beyond Amyloid. Neurobiol Sleep Circadian Rhythms. 2017;2:4-14. doi:10.1016/j.nbscr.2016.08.002
  • Uddin MS, Tewari D, Mamun AA, et al. Circadian and sleep dysfunction in Alzheimer's disease. Ageing Res Rev. 2020;60:101046. doi:10.1016/j.arr.2020.101046
  • Carrero, L., Antequera, D., Municio, C., & Carro, E. (2024). Circadian rhythm disruption and retinal dysfunction: a bidirectional link in Alzheimer's disease?. Neural Regeneration Research, 19(9), 1967-1972.

Circadian Rhythm and Gut Microbiota: Synchronized Harmony of Health

Yıl 2025, Cilt: 6 Sayı: 2, 81 - 92, 30.09.2025

Öz

Gut microbiota plays a critical role in human health. Microbiota affects health by modulating many
physiological processes such as development, maturation and functioning of the immune system. The
composition of the microbiota is influenced by factors such as age, gender, nutrition, stress and especially circadian rhythm. In recent years, it has been revealed that circadian rhythm has a bidirectional relationship with gut microbiota. Circadian rhythm ensures that biological processes in the body are synchronised with 24-hour cycles. While the microbiota affects circadian gene expression, circadian rhythm can also alter microbial composition. This interaction plays an important role in the development of chronic diseases such as obesity, type 2 diabetes, cardiovascular diseases and neurodegenerative disorders. In this review, the general characteristics of microbiota and circadian rhythm are presented and the possible mechanisms of their interaction, especially in the context of cardiometabolic diseases, are discussed.

Kaynakça

  • Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392-400. doi:10.1038/nm.4517
  • Cryan JF, O'Riordan KJ, Cowan CSM, et al. The Microbiota-Gut-Brain Axis. Physiol Rev. 2019;99(4):1877-2013. doi:10.1152/physrev.00018.2018
  • Zahran SA, Ali-Tammam M, Ali AE, Aziz RK. Compositional variation of the human fecal microbiome in relation to azo-reducing activity: a pilot study. Gut Pathog. 2021;13(1):58. Published 2021 Oct 8. doi:10.1186/s13099-021-00454-0
  • Cheng J, Ringel-Kulka T, Heikamp-de Jong I, et al. Discordant temporal development of bacterial phyla and the emergence of core in the fecal microbiota of young children. ISME J. 2016;10(4):1002-1014. doi:10.1038/ismej.2015.177
  • Sender R, Fuchs S, Milo R. Revised Estimates for the Number of Human and Bacteria Cells in the Body. PLoS Biol 2016; 14:e1002533.
  • Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis. 2015;26:26191. Published 2015 Feb 2. doi:10.3402/mehd.v26.26191
  • Pearson JA, Wong FS, Wen L. Crosstalk between circadian rhythms and the microbiota. Immunology. 2020;161(4):278-290. doi:10.1111/imm.13278
  • Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD. Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes. 2012;3(3):203-220. doi:10.4161/gmic.20169
  • Kozyrskyj AL, Bridgman SL, Tun HM. Microbiota in health and disease: from pregnancy to childhood. In: Browne PD, Claassen E, Cabana MD, editors. Microbiota in health and disease: from pregnancy to childhood. 2017. p. 79–104.
  • Dubos R, Schaedler RW, Costello RL. The effect of antibacterial drugs on the weight of mice. J Exp Med. 1963;117:245–257. doi:10.1084/jem.117.2.245
  • Pérez-Cano FJ. Mediterranean Diet, Microbiota and Immunity. Nutrients. 2022;14(2):273.
  • David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559-563. doi:10.1038/nature12820
  • Duncanson K, Williams G, Hoedt EC, Collins CE, Keely S, Talley NJ. Diet-microbiota associations in gastrointestinal research: a systematic review. Gut Microbes. 2024;16(1):2350785. doi:10.1080/19490976.2024.2350785.
  • Wu YT, Shen SJ, Liao KF, Huang CY. Dietary plant and animal protein sources oppositely modulate fecal Bilophila and Lachnoclostridium in vegetarians and omnivores. Microbiol Spectr. 2022;10(2):e0204721. doi:10.1128/spectrum.02047-21.
  • Cândido TLN, da Silva LE, Tavares JF, Conti ACM, Rizzardo RAG, Gonçalves Alfenas R de C. Effects of dietary fat quality on metabolic endotoxaemia: a systematic review. British Journal of Nutrition. 2020;124(7):654-667. doi:10.1017/S0007114520001658
  • Cryan JF, Dinan TG. Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.
  • Agusti A, Lamers F, Tamayo M, Benito-Amat C, Molina-Mendoza GV, Penninx BWJH, Sanz Y. The Gut Microbiome in Early Life Stress: A Systematic Review. Nutrients. 2023;15(11):2566.
  • Matenchuk BA, Mandhane PJ, Kozyrskyj AL. Sleep, circadian rhythm, and gut microbiota. Sleep Med Rev. 2020;53:101340. doi:10.1016/j.smrv.2020.101340
  • Voigt RM, Forsyth CB, Green SJ, Engen PA, Keshavarzian A. Circadian Rhythm and the Gut Microbiome. Int Rev Neurobiol. 2016;131:193-205. doi:10.1016/bs.irn.2016.07.002
  • Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164-179. doi:10.1038/nrg.2016.150
  • Teichman EM, O'Riordan KJ, Gahan CGM, Dinan TG, Cryan JF. When Rhythms Meet the Blues: Circadian Interactions with the Microbiota-Gut-Brain Axis. Cell Metab. 2020;31(3):448-471. doi:10.1016/j.cmet.2020.02.008
  • Bischoff SC. Microbiota and aging. Curr Opin Clin Nutr Metab Care. 2016;19(1):26-30. doi:10.1097/MCO.0000000000000242
  • Cohen SE, Golden SS. Circadian Rhythms in Cyanobacteria. Microbiol Mol Biol Rev. 2015;79(4):373-385. doi:10.1128/MMBR.00036-15
  • Paulose JK, Cassone VM. The melatonin-sensitive circadian clock of the enteric bacterium Enterobacter aerogenes. Gut Microbes. 2016;7(5):424-427. doi:10.1080/19490976.2016.1208892
  • Deaver JA, Eum SY, Toborek M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front Microbiol. 2018;9:737. doi:10.3389/fmicb.2018.00737.
  • Parkar SG, Kalsbeek A, Cheeseman JF. Potential role for the gut microbiota in modulating host circadian rhythms and metabolic health. Microorganisms. 2019;7(2):41. doi:10.3390/microorganisms7020041.
  • Thaiss CA, Zeevi D, Levy M, et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell. 2014;159(3):514-529. doi:10.1016/j.cell.2014.09.048
  • Heddes M, Altaha B, Niu Y, Reitmeier S, Kleigrewe K, Haller D, Kiessling S. The intestinal clock drives the microbiome to maintain gastrointestinal homeostasis. Nat Commun. 2022;13:6068. doi:10.1038/s41467-022-33609-x.
  • Mitjavila MT, Moreno JJ. The effects of polyphenols on oxidative stress and the arachidonic acid cascade. Implications for the prevention/treatment of high prevalence diseases. Biochem Pharmacol. 2012;84(9):1113-1122. doi:10.1016/j.bcp.2012.07.017
  • Pounis G, Costanzo S, Bonaccio M, et al. Reduced mortality risk by a polyphenol-rich diet: An analysis from the Moli-sani study. Nutrition. 2018;48:87-95. doi:10.1016/j.nut.2017.11.012
  • Pan IH, Lai CS, Wu JC, Ho CT. Epigenetic and disease targets by polyphenols. Curr Pharm Des. 2013;19(34):5703-5716. doi:10.2174/1381612811319340010.
  • Borsoi FT, Neri-Numa IA, Oliveira WQ de, Araújo FF de, Pastore GM. Dietary polyphenols and their relationship to the modulation of non-communicable chronic diseases and epigenetic mechanisms: A mini-review. Food Chem Mol Sci. 2023;6:100155. doi:10.1016/j.fochms.2022.100155.
  • Tresserra‐Rimbau A, Rimm E., Medina‐Remón A, Martínez‐González MA, et al. Inverse association between habitual polyphenol intake and incidence of cardiovascular events in the PREDIMED study. NMCD., 2014;24:639–647. https://doi.org/10.1016/j.numecd. 2013.12.014
  • Man AWC, Xia N, Daiber A, Li H. The roles of gut microbiota and circadian rhythm in the cardiovascular protective effects of polyphenols. Br J Pharmacol. 2020;177(6):1278-1293. doi:10.1111/bph.14850
  • Qi G, Mi Y, Liu Z, Fan R et al. Dietary tea polyphenols ameliorate metabolic syndrome and memory impairment via circadian clock related mechanisms. J. Funct.Foods. 2017;34:168–180. https://doi.org/10.1016/j.jff.2017.04.031
  • Kiouptsi K, Reinhardt C. Contribution of the commensal microbiota to atherosclerosis and arterial thrombosis. Br J Pharmacol. 2018;175(24):4439-4449. doi:10.1111/bph.14483
  • Jäckel S, Kiouptsi K, Lillich M, et al. Gut microbiota regulate hepatic von Willebrand factor synthesis and arterial thrombus formation via Toll-like receptor-2. Blood. 2017;130(4):542-553. doi:10.1182/blood-2016-11-754416
  • Rath S, Heidrich B, Pieper DH, Vital M. Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome. 2017;5(1):54. Published 2017 May 15. doi:10.1186/s40168-017-0271-9
  • Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell. 2015;163(7):1585-1595. doi:10.1016/j.cell.2015.11.055
  • Paschos GK, FitzGerald GA. Circadian clocks and vascular function. Circ Res. 2010;106(5):833-841. doi:10.1161/CIRCRESAHA.109.211706
  • Farajnia S, Deboer T, Rohling JH, Meijer JH, Michel S. Aging of the suprachiasmatic clock. Neuroscientist. 2014;20(1):44-55. doi:10.1177/1073858413498936
  • Anea CB, Zhang M, Stepp DW, et al. Vascular disease in mice with a dysfunctional circadian clock. Circulation. 2009;119(11):1510-1517. doi:10.1161/CIRCULATIONAHA.108.827477
  • Turek FW, Joshu C, Kohsaka A, et al. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 2005;308(5724):1043-1045. doi:10.1126/science.1108750
  • Mistry P, Reitz CJ, Khatua TN, Rasouli M, Oliphant K, Young ME, Allen-Vercoe E, Martino TA. Circadian influence on the microbiome improves heart failure outcomes. J Mol Cell Cardiol. 2020;149:54–72. doi:10.1016/j.yjmcc.2020.09.006.
  • Di Lorenzo C, Colombo F, Biella S, Stockley C, Restani P. Polyphenols and human health: The role of bioavailability. Nutrients. 2021;13(1):273. doi:10.3390/nu13010273.
  • Aatif M. Current understanding of polyphenols to enhance bioavailability for better therapies. Biomedicines. 2023;11(7):2078. doi:10.3390/biomedicines11072078.
  • Kawabata K, Yoshioka Y, Terao J. Role of Intestinal Microbiota in the Bioavailability and Physiological Functions of Dietary Polyphenols. Molecules. 2019;24(2):370. doi:10.3390/molecules24020370
  • Plamada D, Vodnar DC. Polyphenols-gut microbiota interrelationship: A transition to a new generation of prebiotics. Nutrients. 2021;14(1):137. doi:10.3390/nu14010137
  • Ozdal T, Sela DA, Xiao J, Boyacioglu D, Chen F, Capanoglu E. The Reciprocal Interactions between Polyphenols and Gut Microbiota and Effects on Bioaccessibility. Nutrients. 2016;8(2):78. doi:10.3390/nu8020078
  • Rodríguez-Daza MC, de Vos WM. Polyphenols as drivers of a homeostatic gut microecology and immuno-metabolic traits of Akkermansia muciniphila: From mouse to man. Int J Mol Sci. 2022;24(1):45. doi:10.3390/ijms24010045
  • Tahara Y, Yamazaki M, Sukigara H, et al. Gut microbiota-derived short chain fatty acids ınduce circadian clock entrainment in mouse peripheral tissues. sci rep. 2018;8(1):1395. doi:10.1038/s41598-018-19836-7
  • Rasouli-Saravani A, Jahankhani K, Moradi S, et al. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother. 2023;162:114620. doi:10.1016/j.biopha.2023.114620
  • Choi H, Rao MC, Chang EB. Gut microbiota as a transducer of dietary cues to regulate host circadian rhythms and metabolism. Nat Rev Gastroenterol Hepatol. 2021;18(10):679-689. doi:10.1038/s41575-021-00452-2
  • Pascual-Serrano A, Arola-Arnal A, Suárez-García S, et al. Grape seed proanthocyanidin supplementation reduces adipocyte size and increases adipocyte number in obese rats. Int J Obes (Lond). 2017;41(8):1246-1255. doi:10.1038/ijo.2017.90
  • Liu M, Yun P, Hu Y, Yang J, Khadka RB, Peng X. Effects of Grape Seed Proanthocyanidin Extract on Obesity. Obes Facts. 2020;13(2):279-291. doi:10.1159/000502235
  • Tipoe GL, Leung TM, Hung MW, Fung ML. Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc Hematol Disord Drug Targets. 2007;7(2):135-144. doi:10.2174/187152907780830905
  • Mi Y, Qi G, Fan R, Ji X, Liu Z, Liu X. EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock. Biochim Biophys Acta Mol Basis Dis. 2017;1863(6):1575-1589. doi:10.1016/j.bbadis.2017.04.009
  • Ushiroda C, Naito Y, Takagi T, et al. Green tea polyphenol (epigallocatechin-3-gallate) improves gut dysbiosis and serum bile acids dysregulation in high-fat diet-fed mice. J Clin Biochem Nutr. 2019;65(1):34-46. doi:10.3164/jcbn.18-116
  • Cai S, Xie LW, Xu JY, et al. (-)-Epigallocatechin-3-Gallate (EGCG) Modulates the Composition of the Gut Microbiota to Protect Against Radiation-Induced Intestinal Injury in Mice. Front Oncol. 2022;12:848107.. doi:10.3389/fonc.2022.848107
  • Xia N, Daiber A, Förstermann U, Li H. Antioxidant effects of resveratrol in the cardiovascular system. Br J Pharmacol. 2017;174(12):1633-1646. doi:10.1111/bph.13492
  • Oike H, Kobori M. Resveratrol regulates circadian clock genes in Rat-1 fibroblast cells. Biosci Biotechnol Biochem. 2008;72(11):3038-3040. doi:10.1271/bbb.80426
  • Bai B, Man AW, Yang K, et al. Endothelial SIRT1 prevents adverse arterial remodeling by facilitating HERC2-mediated degradation of acetylated LKB1. Oncotarget. 2016;7(26):39065-39081. doi:10.18632/oncotarget.9687
  • Knutsson A, Kempe A. Shift work and diabetes-a systematic review. Chronobiol. Int. 2014;31(10):1146–1151.
  • Rosenfeld CS. Homage to the “H” in developmental origins of health and disease.J Dev Orig Health Dis. 2017;8(1):8–29.
  • Mukherji A, Kobiita A, Chambon P. Shifting the feeding of mice to the rest phase creates metabolic alterations, which, on their own, shift the peripheral circadian clocks by 12 hours. Proc Natl Acad Sci U S A. 2015;112(48):E6683-E6690. doi:10.1073/pnas.1519735112
  • Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100-2102. doi:10.1038/oby.2009.264
  • Jakubowicz D, Wainstein J, Ahren B, Landau Z, Bar-Dayan Y, Froy O. Fasting until noon triggers increased postprandial hyperglycemia and impaired insulin response after lunch and dinner in individuals with type 2 diabetes: a randomized clinical trial. Diabetes Care. 2015;38(10):1820-1826. doi:10.2337/dc15-0761
  • Jakubowicz D, Wainstein J, Landau Z, et al. Influences of Breakfast on Clock Gene Expression and Postprandial Glycemia in Healthy Individuals and Individuals With Diabetes: A Randomized Clinical Trial. Diabetes Care. 2017;40(11):1573-1579. doi:10.2337/dc16-2753
  • Wu T, Sun L, ZhuGe F, et al. Differential roles of breakfast and supper in rats of a daily three-meal schedule upon circadian regulation and physiology. Chronobiol Int. 2011;28(10):890-903. doi:10.3109/07420528.2011.622599
  • Zhou L, Kang L, Xiao X, Jia L, Zhang Q, Deng M. "Gut Microbiota-Circadian Clock Axis" in Deciphering the Mechanism Linking Early-Life Nutritional Environment and Abnormal Glucose Metabolism. Int J Endocrinol. 2019;2019:5893028. Published 2019 Aug 27. doi:10.1155/2019/5893028
  • Wang D, Chen S, Liu M, Liu C. Maternal obesity disrupts circadian rhythms of clock and metabolic genes in the offspring heart and liver. Chronobiol Int. 2015;32(5):615-626. doi:10.3109/07420528.2015.1025958
  • Li Y, Zhang J, Ma H, et al. The role of short-chain fatty acids from gut microbiota in hypertension. Front Microbiol. 2021;12:730809. doi:10.3389/fmicb.2021.730809
  • Gao Z, Yin J, Zhang J, et al. Butyrate improves insulin sensitivity and increases energy expenditure in mice. Diabetes. 2009;58(7):1509-1517. doi:10.2337/db08-1637
  • Beckers KF, Flanagan JP, Sones JL. Microbiome and pregnancy: focus on microbial dysbiosis coupled with maternal obesity. Int J Obes (Lond). 2024;48(4):439-448. doi:10.1038/s41366-023-01438-7
  • Li Y, Shao L, Mou Y, Zhang Y, Ping Y. Sleep, circadian rhythm and gut microbiota: alterations in Alzheimer's disease and their potential links in the pathogenesis. Gut Microbes. 2021;13(1):1957407. doi:10.1080/19490976.2021.1957407
  • Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189-200. doi:10.1080/19490976.2015.1134082
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325-2340. doi:10.1194/jlr.R036012
  • Carvalho BM, Guadagnini D, Tsukumo DML, et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia. 2012;55(10):2823-2834. doi:10.1007/s00125-012-2648-4
  • Koliada A, Syzenko G, Moseiko V, et al. Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiol. 2017;17(1):120. Published 2017 May 22. doi:10.1186/s12866-017-1027-1
  • Poroyko VA, Carreras A, Khalfya A et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6: 35405.
  • Cortés-Martín A, Iglesias-Aguirre CE, Meoro A, Selma MV, Espín JC. There is No Distinctive Gut Microbiota Signature in the Metabolic Syndrome: Contribution of Cardiovascular Disease Risk Factors and Associated Medication. Microorganisms. 2020;8(3):416.
  • Kootte RS, Levin E, Salojärvi J, et al. Improvement of Insulin Sensitivity after Lean Donor Feces in Metabolic Syndrome Is Driven by Baseline Intestinal Microbiota Composition. Cell Metab. 2017;26(4):611-619.e6. doi:10.1016/j.cmet.2017.09.008
  • Bishehsari F, Engen PA, Voigt RM, et al. Abnormal Eating Patterns Cause Circadian Disruption and Promote Alcohol-Associated Colon Carcinogenesis. Cell Mol Gastroenterol Hepatol. 2020;9(2):219-237. doi:10.1016/j.jcmgh.2019.10.011
  • Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177-185. doi:10.1038/nature21363
  • Bloom GS. Amyloid-β and tau: the trigger and bullet in Alzheimer disease pathogenesis. JAMA Neurol. 2014;71(4):505–8. https://doi.org/10.1001/jamaneurol.2013.5847
  • Nuzum ND, Loughman A, Szymlek-Gay EA, Hendy A, Teo WP, Macpherson H. Gut microbiota differences between healthy older adults and individuals with Parkinson's disease: A systematic review. Neurosci Biobehav Rev. 2020;112:227-241. doi:10.1016/j.neubiorev.2020.02.003
  • Cryan JF, O'Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020;19(2):179-194. doi:10.1016/S1474-4422(19)30356-4
  • Li B, He Y, Ma J, et al. Mild cognitive impairment has similar alterations as Alzheimer's disease in gut microbiota. Alzheimers Dement. 2019;15(10):1357-1366. doi:10.1016/j.jalz.2019.07.002
  • Holth J, Patel T, Holtzman DM. Sleep in Alzheimer's Disease - Beyond Amyloid. Neurobiol Sleep Circadian Rhythms. 2017;2:4-14. doi:10.1016/j.nbscr.2016.08.002
  • Uddin MS, Tewari D, Mamun AA, et al. Circadian and sleep dysfunction in Alzheimer's disease. Ageing Res Rev. 2020;60:101046. doi:10.1016/j.arr.2020.101046
  • Carrero, L., Antequera, D., Municio, C., & Carro, E. (2024). Circadian rhythm disruption and retinal dysfunction: a bidirectional link in Alzheimer's disease?. Neural Regeneration Research, 19(9), 1967-1972.
Toplam 91 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Beslenme Bilimi
Bölüm Derleme
Yazarlar

Çağla Pınarlı Falakacılar 0000-0002-8733-8148

Rabia Melda Karaağaç 0000-0003-2022-2404

Ebrar Usta 0009-0001-6032-407X

Yayımlanma Tarihi 30 Eylül 2025
Gönderilme Tarihi 4 Aralık 2024
Kabul Tarihi 29 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

Vancouver Pınarlı Falakacılar Ç, Karaağaç RM, Usta E. Sirkadiyen Ritim ve Bağırsak Mikrobiyotası: Sağlığın Senkronize Uyumu. SBGY. 2025;6(2):81-92.