Konferans Bildirisi
BibTex RIS Kaynak Göster

Yıl 2019, Cilt: 2 Sayı: 3, 189 - 193, 30.12.2019
https://izlik.org/JA89UL77HY

Öz

Kaynakça

  • [1] A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge, London and New York, 1979.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.
  • [3] H. Fast, Sur la convergence statistique, Colloq. Math.,2 (1951), 241–244.
  • [4] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [5] S. Gupta, V. K. Bhardwaj, On deferred f-statistical convergence, Kyungpook Math. J. 58(1) (2018), 91–103.
  • [6] N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput., 228 (2014), 162–169.
  • [7] M. Çınar, M. Karaka¸s, M. Et, On pointwise and uniform statistical convergence of order $\alpha$ for sequences of functions, Fixed Point Theory Appl. 33(2013), 11.
  • [8] J. S. Connor, The Statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47–63.
  • [9] M. Et, A. Alotaibi, S. A. Mohiuddine, On $(\Delta^{m},I)-$-statistical convergence of order $\alpha$; The Scientific World Journal, 2014, 535419 DOI: 10.1155/2014/535419.
  • [10] M. Et, S. A. Mohiuddine, A. Alotaibi, On $\lambda $-statistical convergence and strongly $\lambda -$summable functions of order $\alpha$, J. Inequal. Appl. 469 (2013), 8.
  • [11] M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order $\alpha$ of sequences of fuzzy mappings, Kuwait J. Sci. 41(3) (2014), 17–30.
  • [12] M. Et, R. Colak, Y. Altın, Strongly almost summable sequences of order $\alpha$; Kuwait J. Sci. 41(2), (2014), 35–47.
  • [13] E. Savaş, M. Et, On $(\Delta_{\lambda}^{m},I)-$ statistical convergence of order $\alpha$, Period. Math. Hungar. 71(2) (2015), 135–145.
  • [14] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [15] M. I¸sık, K. E. Akba¸s, On Lamda-statistical convergence of order $\alpha$ in probability, J. Inequal. Spec. Funct. 8(4) (2017), 57–64.
  • [16] M. I¸sık, K. E. Et, On lacunary statistical convergence of order $\alpha$ in probability, AIP Conference Proceedings 1676, 020045 (2015); doi: http://dx.doi.org/10.1063/1.4930471.
  • [17] M. I¸sık, K. E. Akbaş, On Asymptotically Lacunary Statistical Equivalent Sequences of Order $\alpha$ in Probability, ITM Web of Conferences 13, 01024 (2017). DOI: 10.1051/itmconf/20171301024.
  • [18] S. A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal., 2002 (2012), Article ID 719729, 9 pp.
  • [19] M. Mursaleen, A. Khan, H. M. Srivastava, K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput., 219 (2013), 6911–6918.
  • [20] F. Nuray, Lamda-strongly summable and $\lambda-$-statistically convergent functions, Iran. J. Sci. Technol. Trans. A Sci., 34 (2010), 335–338.
  • [21] F. Nuray, B. Aydin, Strongly summable and statistically convergent functions, Inform. Technol. Valdymas 1(30) (2004), 74–76.
  • [22] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
  • [23] H. Şengül, M. Et, On I-lacunary statistical convergence of order $\alpha$ of sequences of sets, Filomat 31(8) (2017), 2403–2412.
  • [24] H. Şengül, On Wijsman I-lacunary statistical equivalence of order $(\eta,\mu)$, J. Inequal. Spec. Funct. 9(2) (2018), 92–101.
  • [25] H. Şengül, On $S_{\alpha}^{\beta}\left( \theta\right) -$ convergence and strong $N_{\alpha}^{\beta}\left( \theta,p\right) -$ summability, J. Nonlinear Sci. Appl. 10(9) (2017), 5108–5115.
  • [26] H. Şengül, M. Et, Lacunary statistical convergence of order $(\alpha,\beta)$ in topological groups, Creat. Math. Inform. 2683 (2017), 339–344.
  • [27] H. M. Srivastava, M. Mursaleen, A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Modelling 55 (2012), 2040–2051.
  • [28] H. M. Srivastava, M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order $\alpha$; Filomat 31(6) (2017), 1573–1582.
  • [29] R. P. Agnew, On deferred Cesàro mean, Ann. Math.,33 (1932), 413-421.
  • [30] M. Küçükaslan, M. Yılmaztürk On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016), 357-366.

Deferred Statistical Convergence in Metric Spaces

Yıl 2019, Cilt: 2 Sayı: 3, 189 - 193, 30.12.2019
https://izlik.org/JA89UL77HY

Öz

In this paper, the concept of deferred statistical convergence is generalized to general metric spaces, and some inclusion relations between deferred strong Ces\`{a}ro summability and deferred statistical convergence are given in general metric spaces.

Kaynakça

  • [1] A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge, London and New York, 1979.
  • [2] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math., 2 (1951), 73–74.
  • [3] H. Fast, Sur la convergence statistique, Colloq. Math.,2 (1951), 241–244.
  • [4] I. J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Monthly, 66 (1959), 361–375.
  • [5] S. Gupta, V. K. Bhardwaj, On deferred f-statistical convergence, Kyungpook Math. J. 58(1) (2018), 91–103.
  • [6] N. L. Braha, H. M. Srivastava, S. A. Mohiuddine, A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput., 228 (2014), 162–169.
  • [7] M. Çınar, M. Karaka¸s, M. Et, On pointwise and uniform statistical convergence of order $\alpha$ for sequences of functions, Fixed Point Theory Appl. 33(2013), 11.
  • [8] J. S. Connor, The Statistical and strong p-Cesàro convergence of sequences, Analysis, 8 (1988), 47–63.
  • [9] M. Et, A. Alotaibi, S. A. Mohiuddine, On $(\Delta^{m},I)-$-statistical convergence of order $\alpha$; The Scientific World Journal, 2014, 535419 DOI: 10.1155/2014/535419.
  • [10] M. Et, S. A. Mohiuddine, A. Alotaibi, On $\lambda $-statistical convergence and strongly $\lambda -$summable functions of order $\alpha$, J. Inequal. Appl. 469 (2013), 8.
  • [11] M. Et, B. C. Tripathy, A. J. Dutta, On pointwise statistical convergence of order $\alpha$ of sequences of fuzzy mappings, Kuwait J. Sci. 41(3) (2014), 17–30.
  • [12] M. Et, R. Colak, Y. Altın, Strongly almost summable sequences of order $\alpha$; Kuwait J. Sci. 41(2), (2014), 35–47.
  • [13] E. Savaş, M. Et, On $(\Delta_{\lambda}^{m},I)-$ statistical convergence of order $\alpha$, Period. Math. Hungar. 71(2) (2015), 135–145.
  • [14] J. A. Fridy, On statistical convergence, Analysis, 5 (1985), 301–313.
  • [15] M. I¸sık, K. E. Akba¸s, On Lamda-statistical convergence of order $\alpha$ in probability, J. Inequal. Spec. Funct. 8(4) (2017), 57–64.
  • [16] M. I¸sık, K. E. Et, On lacunary statistical convergence of order $\alpha$ in probability, AIP Conference Proceedings 1676, 020045 (2015); doi: http://dx.doi.org/10.1063/1.4930471.
  • [17] M. I¸sık, K. E. Akbaş, On Asymptotically Lacunary Statistical Equivalent Sequences of Order $\alpha$ in Probability, ITM Web of Conferences 13, 01024 (2017). DOI: 10.1051/itmconf/20171301024.
  • [18] S. A. Mohiuddine, A. Alotaibi, M. Mursaleen, Statistical convergence of double sequences in locally solid Riesz spaces, Abstr. Appl. Anal., 2002 (2012), Article ID 719729, 9 pp.
  • [19] M. Mursaleen, A. Khan, H. M. Srivastava, K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput., 219 (2013), 6911–6918.
  • [20] F. Nuray, Lamda-strongly summable and $\lambda-$-statistically convergent functions, Iran. J. Sci. Technol. Trans. A Sci., 34 (2010), 335–338.
  • [21] F. Nuray, B. Aydin, Strongly summable and statistically convergent functions, Inform. Technol. Valdymas 1(30) (2004), 74–76.
  • [22] T. Šalát, On statistically convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150.
  • [23] H. Şengül, M. Et, On I-lacunary statistical convergence of order $\alpha$ of sequences of sets, Filomat 31(8) (2017), 2403–2412.
  • [24] H. Şengül, On Wijsman I-lacunary statistical equivalence of order $(\eta,\mu)$, J. Inequal. Spec. Funct. 9(2) (2018), 92–101.
  • [25] H. Şengül, On $S_{\alpha}^{\beta}\left( \theta\right) -$ convergence and strong $N_{\alpha}^{\beta}\left( \theta,p\right) -$ summability, J. Nonlinear Sci. Appl. 10(9) (2017), 5108–5115.
  • [26] H. Şengül, M. Et, Lacunary statistical convergence of order $(\alpha,\beta)$ in topological groups, Creat. Math. Inform. 2683 (2017), 339–344.
  • [27] H. M. Srivastava, M. Mursaleen, A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Modelling 55 (2012), 2040–2051.
  • [28] H. M. Srivastava, M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order $\alpha$; Filomat 31(6) (2017), 1573–1582.
  • [29] R. P. Agnew, On deferred Cesàro mean, Ann. Math.,33 (1932), 413-421.
  • [30] M. Küçükaslan, M. Yılmaztürk On deferred statistical convergence of sequences, Kyungpook Math. J. 56 (2016), 357-366.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Konferans Bildirisi
Yazarlar

Mikail Et 0000-0001-8292-7819

Muhammed Cinar 0000-0002-0958-0705

Hacer Şengül 0000-0003-4453-0786

Kabul Tarihi 12 Aralık 2019
Yayımlanma Tarihi 30 Aralık 2019
IZ https://izlik.org/JA89UL77HY
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 3

Kaynak Göster

APA Et, M., Cinar, M., & Şengül, H. (2019). Deferred Statistical Convergence in Metric Spaces. Conference Proceedings of Science and Technology, 2(3), 189-193. https://izlik.org/JA89UL77HY
AMA 1.Et M, Cinar M, Şengül H. Deferred Statistical Convergence in Metric Spaces. Conference Proceedings of Science and Technology. 2019;2(3):189-193. https://izlik.org/JA89UL77HY
Chicago Et, Mikail, Muhammed Cinar, ve Hacer Şengül. 2019. “Deferred Statistical Convergence in Metric Spaces”. Conference Proceedings of Science and Technology 2 (3): 189-93. https://izlik.org/JA89UL77HY.
EndNote Et M, Cinar M, Şengül H (01 Aralık 2019) Deferred Statistical Convergence in Metric Spaces. Conference Proceedings of Science and Technology 2 3 189–193.
IEEE [1]M. Et, M. Cinar, ve H. Şengül, “Deferred Statistical Convergence in Metric Spaces”, Conference Proceedings of Science and Technology, c. 2, sy 3, ss. 189–193, Ara. 2019, [çevrimiçi]. Erişim adresi: https://izlik.org/JA89UL77HY
ISNAD Et, Mikail - Cinar, Muhammed - Şengül, Hacer. “Deferred Statistical Convergence in Metric Spaces”. Conference Proceedings of Science and Technology 2/3 (01 Aralık 2019): 189-193. https://izlik.org/JA89UL77HY.
JAMA 1.Et M, Cinar M, Şengül H. Deferred Statistical Convergence in Metric Spaces. Conference Proceedings of Science and Technology. 2019;2:189–193.
MLA Et, Mikail, vd. “Deferred Statistical Convergence in Metric Spaces”. Conference Proceedings of Science and Technology, c. 2, sy 3, Aralık 2019, ss. 189-93, https://izlik.org/JA89UL77HY.
Vancouver 1.Et M, Cinar M, Şengül H. Deferred Statistical Convergence in Metric Spaces. Conference Proceedings of Science and Technology [Internet]. 01 Aralık 2019;2(3):189-93. Erişim adresi: https://izlik.org/JA89UL77HY