Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 1, 97 - 103, 30.10.2019

Öz

Kaynakça

  • [1] B. Choudhary, S. Nanda, Functional Analysis with Applications, Wiley, New Delhi, 1989.
  • [2] W.H. Ruckle, Sequence spaces, Pitman Publishing, Toronto, 1981.
  • [3] H. Kızmaz, On certain sequence space, Canad. Math. Bull., 24 (2) (1981), 169-176.
  • [4] R. Brawer, Potenzen der Pascal matrix und eine Identitat der Kombinatorik, Elem. der Math., 45 (1990), 107-110.
  • [5] A. Edelman, G. Strang, Pascal Matrices, The Mathematical Association of America, Monthly, 111 (2004), 189-197.
  • [6] C. Lay David, Linear Algebra and Its Applications: 4th Ed., Boston, Pearson, Addison-Wesley, 2012.
  • [7] G. H. Lawden, Pascal matrices, Mathematical Gazette, 56 (398) (1972), 325-327.
  • [8] H. Polat, Some New Pascal Sequence Spaces, Fundamental Journal of Mathematics and Applications, 1 (2018), 61-68.
  • [9] M. Et, R. Çolak, On some genaralized difference sequence spaces, Soochow J. Math., 21 (4) (1995), 377-386.
  • [10] M. Mursaleen, Generalized spaces of difference sequences. J. Math. Anal. Appl., 203 (1996), 738-745.
  • [11] E. Malkowsky, S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis, 17 (1997), 87-97.
  • [12] R. Çolak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26 (3) (1997), 483-492.
  • [13] M. Et, M. Ba¸sarır, On some genaralized difference sequence spaces, Period. Math. Hung., 35 (3) (1997), 169-175.
  • [14] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 30 (2006), 209-220.
  • [15] B. Altay, F. Ba¸sar, The fine spectrum and the matrix domain of the difference operator on the sequence space lp; (0 < p < 1), Commun. Math. Anal., 2 (2) (2007), 1-11.
  • [16] E. Malkowsky, M. Mursaleen, The Dual Spaces of Sets of Difference Sequences of Order m and Matrix Transformations, Acta Mathematica Sinica, 23 (3), (2007), 521-532.
  • [17] H. Polat, F. Ba¸sar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed., 27B (2) (2007), 254-266.
  • [18] V. Karakaya, H. Polat, Some New Paranormed Sequence Spaces defined by Euler and Difference Operators, Acta Sci. Math(Szeged), 76 (2010), 87-100.
  • [19] M. Mursaleen, A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52, 3-4 (2010), 603-617.
  • [20] H. Polat, V.Karakaya, N. ¸Sim¸sek, Difference Sequence Spaces Derived by Generalized Weighted Mean, Applied Mathematics Letters, 24 (2011), 608-614.
  • [21] M. Stieglitz, H. Tietz, Matrix transformationen von Folgenraumen Eine Ergebnisübersict, Math. Z., 154 (1977), 1-16.

Some Pascal Spaces of Difference Sequences Spaces of Order m

Yıl 2019, Cilt: 2 Sayı: 1, 97 - 103, 30.10.2019

Öz

The main purpose of this article is to introduce new sequence spaces $p_{\infty }\left( \Delta ^{(m)}\right) $, $p_{c}\left( \Delta ^{(m)}\right) $ and $p_{0}\left( \Delta ^{(m)}\right) $ which are consisted by sequences whose $m^{th}$ order differences are in the Pascal sequence spaces $p_{\infty }$, $p_{c}$ and $p_{0}$, respectively. Furthermore, the bases of the new difference sequence spaces $p_{c}\left( \Delta ^{(m)}\right) $ and $p_{0}\left( \Delta ^{(m)}\right) ,$ and the $% \alpha $-, $\beta $-$\ $and $\gamma $-duals of the new difference sequence spaces $p_{\infty }\left( \Delta ^{(m)}\right) $, $p_{c}\left( \Delta ^{(m)}\right) $ and $p_{0}\left( \Delta ^{(m)}\right) \ $have been determined. Finally, necessary and sufficient conditions on an infinite matrix belonging to the classes $(p_{c}\left( \Delta ^{(m)}\right) :l_{\infty })$ and $(p_{c}\left( \Delta ^{(m)}\right) :c)$ are obtained.

Kaynakça

  • [1] B. Choudhary, S. Nanda, Functional Analysis with Applications, Wiley, New Delhi, 1989.
  • [2] W.H. Ruckle, Sequence spaces, Pitman Publishing, Toronto, 1981.
  • [3] H. Kızmaz, On certain sequence space, Canad. Math. Bull., 24 (2) (1981), 169-176.
  • [4] R. Brawer, Potenzen der Pascal matrix und eine Identitat der Kombinatorik, Elem. der Math., 45 (1990), 107-110.
  • [5] A. Edelman, G. Strang, Pascal Matrices, The Mathematical Association of America, Monthly, 111 (2004), 189-197.
  • [6] C. Lay David, Linear Algebra and Its Applications: 4th Ed., Boston, Pearson, Addison-Wesley, 2012.
  • [7] G. H. Lawden, Pascal matrices, Mathematical Gazette, 56 (398) (1972), 325-327.
  • [8] H. Polat, Some New Pascal Sequence Spaces, Fundamental Journal of Mathematics and Applications, 1 (2018), 61-68.
  • [9] M. Et, R. Çolak, On some genaralized difference sequence spaces, Soochow J. Math., 21 (4) (1995), 377-386.
  • [10] M. Mursaleen, Generalized spaces of difference sequences. J. Math. Anal. Appl., 203 (1996), 738-745.
  • [11] E. Malkowsky, S. D. Parashar, Matrix transformations in spaces of bounded and convergent difference sequences of order m, Analysis, 17 (1997), 87-97.
  • [12] R. Çolak, M. Et, On some generalized difference sequence spaces and related matrix transformations, Hokkaido Math. J., 26 (3) (1997), 483-492.
  • [13] M. Et, M. Ba¸sarır, On some genaralized difference sequence spaces, Period. Math. Hung., 35 (3) (1997), 169-175.
  • [14] B. Altay, H. Polat, On some new Euler difference sequence spaces, Southeast Asian Bull. Math., 30 (2006), 209-220.
  • [15] B. Altay, F. Ba¸sar, The fine spectrum and the matrix domain of the difference operator on the sequence space lp; (0 < p < 1), Commun. Math. Anal., 2 (2) (2007), 1-11.
  • [16] E. Malkowsky, M. Mursaleen, The Dual Spaces of Sets of Difference Sequences of Order m and Matrix Transformations, Acta Mathematica Sinica, 23 (3), (2007), 521-532.
  • [17] H. Polat, F. Ba¸sar, Some Euler spaces of difference sequences of order m, Acta Math. Sci. Ser. B Engl. Ed., 27B (2) (2007), 254-266.
  • [18] V. Karakaya, H. Polat, Some New Paranormed Sequence Spaces defined by Euler and Difference Operators, Acta Sci. Math(Szeged), 76 (2010), 87-100.
  • [19] M. Mursaleen, A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Modelling, 52, 3-4 (2010), 603-617.
  • [20] H. Polat, V.Karakaya, N. ¸Sim¸sek, Difference Sequence Spaces Derived by Generalized Weighted Mean, Applied Mathematics Letters, 24 (2011), 608-614.
  • [21] M. Stieglitz, H. Tietz, Matrix transformationen von Folgenraumen Eine Ergebnisübersict, Math. Z., 154 (1977), 1-16.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Saadettin Aydın 0000-0002-9559-0730

Harun Polat 0000-0003-3955-9197

Yayımlanma Tarihi 30 Ekim 2019
Kabul Tarihi 1 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 1

Kaynak Göster

APA Aydın, S., & Polat, H. (2019). Some Pascal Spaces of Difference Sequences Spaces of Order m. Conference Proceedings of Science and Technology, 2(1), 97-103.
AMA Aydın S, Polat H. Some Pascal Spaces of Difference Sequences Spaces of Order m. Conference Proceedings of Science and Technology. Ekim 2019;2(1):97-103.
Chicago Aydın, Saadettin, ve Harun Polat. “Some Pascal Spaces of Difference Sequences Spaces of Order M”. Conference Proceedings of Science and Technology 2, sy. 1 (Ekim 2019): 97-103.
EndNote Aydın S, Polat H (01 Ekim 2019) Some Pascal Spaces of Difference Sequences Spaces of Order m. Conference Proceedings of Science and Technology 2 1 97–103.
IEEE S. Aydın ve H. Polat, “Some Pascal Spaces of Difference Sequences Spaces of Order m”, Conference Proceedings of Science and Technology, c. 2, sy. 1, ss. 97–103, 2019.
ISNAD Aydın, Saadettin - Polat, Harun. “Some Pascal Spaces of Difference Sequences Spaces of Order M”. Conference Proceedings of Science and Technology 2/1 (Ekim 2019), 97-103.
JAMA Aydın S, Polat H. Some Pascal Spaces of Difference Sequences Spaces of Order m. Conference Proceedings of Science and Technology. 2019;2:97–103.
MLA Aydın, Saadettin ve Harun Polat. “Some Pascal Spaces of Difference Sequences Spaces of Order M”. Conference Proceedings of Science and Technology, c. 2, sy. 1, 2019, ss. 97-103.
Vancouver Aydın S, Polat H. Some Pascal Spaces of Difference Sequences Spaces of Order m. Conference Proceedings of Science and Technology. 2019;2(1):97-103.