Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2019, Cilt: 2 Sayı: 2, 104 - 109, 25.11.2019

Öz

Kaynakça

  • [1] M. C. Chaki, R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297-306.
  • [2] F. Defever, R. Deszcz, M. Hotlos, M. Kucharski, Z. Senturk, Generalisations of Robertson-Walker spaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math., 43 (2000), 13-24.
  • [3] R. Deszcz, M. Hotlos, On some pseudosymmetry type curvature condition, Tsukuba J. Math., 27 (2003), 13-30.
  • [4] R. Deszcz, M. Hotlos, Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemannian space forms, Colloq. Math., 81 (2001), 81-97.
  • [5] R. Deszcz, M. Hotlos, Z. Senturk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math., 27(4) (2001), 375-389.
  • [6] R. DESZCZ, VERHEYEN, P. and VERSTRAELEN, L.: On some generalized Einstein metric conditions, Publ. Inst. Math. (Beograd), 60:74 (1996), pp. 108-120.
  • [7] S. K. Jana, A. K. Debnath, J. Sengupta: On Riemannian manifolds satisfying certain curvature conditions, Bulletin of Natural and Mathematical Sciences, Russia, 30(2) (2013), 40-61.
  • [8] A. Z. Petrov, Einstein Spaces, Pergamon Press, Oxford, 1949.
  • [9] L. Tamassy, T. Q. Binh, On weakly symmetric and weakly projective symmetric Rimannian manifolds, Coll. Math. Soc., J. Bolyai 50 (1989), 663-670 .

On Quasi-Einstein Manifolds Admitting Space-Matter Tensor

Yıl 2019, Cilt: 2 Sayı: 2, 104 - 109, 25.11.2019

Öz

The subject matter of this paper lies in the interesting domain of Differential Geometry and the Theory of General Relativity. Although the space has its motivation in Relativity, we study the geometric properties of the space, inspired by the papers on the geometry related to curvature restrictions. Such a study was joined by A. Z. Petrov to Einstein spaces. We extend the study on quasi-Einstein spaces which can be considered as a generalization of Einstein spaces. This study is supported by an example.

Kaynakça

  • [1] M. C. Chaki, R. K. Maity, On quasi-Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297-306.
  • [2] F. Defever, R. Deszcz, M. Hotlos, M. Kucharski, Z. Senturk, Generalisations of Robertson-Walker spaces, Annales Univ. Sci. Budapest. Eotvos Sect. Math., 43 (2000), 13-24.
  • [3] R. Deszcz, M. Hotlos, On some pseudosymmetry type curvature condition, Tsukuba J. Math., 27 (2003), 13-30.
  • [4] R. Deszcz, M. Hotlos, Z. Senturk, Quasi-Einstein hypersurfaces in semi-Riemannian space forms, Colloq. Math., 81 (2001), 81-97.
  • [5] R. Deszcz, M. Hotlos, Z. Senturk, On curvature properties of quasi-Einstein hypersurfaces in semi-Euclidean spaces, Soochow J. Math., 27(4) (2001), 375-389.
  • [6] R. DESZCZ, VERHEYEN, P. and VERSTRAELEN, L.: On some generalized Einstein metric conditions, Publ. Inst. Math. (Beograd), 60:74 (1996), pp. 108-120.
  • [7] S. K. Jana, A. K. Debnath, J. Sengupta: On Riemannian manifolds satisfying certain curvature conditions, Bulletin of Natural and Mathematical Sciences, Russia, 30(2) (2013), 40-61.
  • [8] A. Z. Petrov, Einstein Spaces, Pergamon Press, Oxford, 1949.
  • [9] L. Tamassy, T. Q. Binh, On weakly symmetric and weakly projective symmetric Rimannian manifolds, Coll. Math. Soc., J. Bolyai 50 (1989), 663-670 .
Toplam 9 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Amith Kumar Debnath Bu kişi benim 0000-0001-5398-1955

Sanjib Kumar Jana Bu kişi benim 0000-0002-4221-8249

Fusun Nurcan 0000-0003-0146-992X

Joydeep Sengupta Bu kişi benim 0000-0002-1609-0798

Yayımlanma Tarihi 25 Kasım 2019
Kabul Tarihi 8 Ekim 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 2 Sayı: 2

Kaynak Göster

APA Debnath, A. K., Jana, S. K., Nurcan, F., Sengupta, J. (2019). On Quasi-Einstein Manifolds Admitting Space-Matter Tensor. Conference Proceedings of Science and Technology, 2(2), 104-109.
AMA Debnath AK, Jana SK, Nurcan F, Sengupta J. On Quasi-Einstein Manifolds Admitting Space-Matter Tensor. Conference Proceedings of Science and Technology. Kasım 2019;2(2):104-109.
Chicago Debnath, Amith Kumar, Sanjib Kumar Jana, Fusun Nurcan, ve Joydeep Sengupta. “On Quasi-Einstein Manifolds Admitting Space-Matter Tensor”. Conference Proceedings of Science and Technology 2, sy. 2 (Kasım 2019): 104-9.
EndNote Debnath AK, Jana SK, Nurcan F, Sengupta J (01 Kasım 2019) On Quasi-Einstein Manifolds Admitting Space-Matter Tensor. Conference Proceedings of Science and Technology 2 2 104–109.
IEEE A. K. Debnath, S. K. Jana, F. Nurcan, ve J. Sengupta, “On Quasi-Einstein Manifolds Admitting Space-Matter Tensor”, Conference Proceedings of Science and Technology, c. 2, sy. 2, ss. 104–109, 2019.
ISNAD Debnath, Amith Kumar vd. “On Quasi-Einstein Manifolds Admitting Space-Matter Tensor”. Conference Proceedings of Science and Technology 2/2 (Kasım 2019), 104-109.
JAMA Debnath AK, Jana SK, Nurcan F, Sengupta J. On Quasi-Einstein Manifolds Admitting Space-Matter Tensor. Conference Proceedings of Science and Technology. 2019;2:104–109.
MLA Debnath, Amith Kumar vd. “On Quasi-Einstein Manifolds Admitting Space-Matter Tensor”. Conference Proceedings of Science and Technology, c. 2, sy. 2, 2019, ss. 104-9.
Vancouver Debnath AK, Jana SK, Nurcan F, Sengupta J. On Quasi-Einstein Manifolds Admitting Space-Matter Tensor. Conference Proceedings of Science and Technology. 2019;2(2):104-9.