Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 1, 11 - 18, 15.12.2020

Öz

Kaynakça

  • 1 A. Bouziani, N. Merazga, and S. Benamira, Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions, Nonlin. Anal. 69 (2008), 1515–1524.
  • 2 S. Cohn, K. Pfabe, and J. Redepenning, A similarity solution to a problem in nonlinear ion transport with a nonlocal condition, Math. Models Methods Appl. Sci. 9(3) (1999), 445–461.
  • 3 W.A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Q. Appl. Math. 40 (1982), 319–330.
  • 4 W.A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Q. Appl. Math. 41 (1983), 468–475.
  • 5 A. Hasanov, B. Pektas, and S. Hasanoglu, An analysis of nonlinear ion transport model including diffusion and migration, J. Math. Chem. 46(4) (2009), 1188–1202.
  • 6 L. Hu, L. Ma and J. Shen, Efficient spectral-Galerkin method and analysis for elliptic PDEs with non-local boundary conditions, J. Sci. Compu. 68(2) (2016), 417–437.
  • 7 A. Guezane-Lakoud, D. Belakroum , Time-discretization schema for an integrodifferential Sobolev type equation with integral conditions, App. Math. Compu. 212 (2012), 4695–4702.
  • 8 J. Kacur, Method of Rothe in Evolution Equations, Teubner Texte zur Mathematik., Teubner, Leipzig, 1985.
  • 9 A. Merad, A. Bouziani and S. Araci, Existence and uniqueness for a solution of pseudohyperbolic equation with nonlocal noundary condition, Appl. Math. Inf. Sci. 9(4) (2015), 1855–1861.
  • 10 M. Slodicka and S. Dehilis, A numerical approach for a semilinear parabolic equation with a nonlocal boundary condition, J. Comput. Appl. Math. 231 (2009), 715–724.
  • 11 M. Slodicka and S. Dehilis, A nonlinear parabolic equation with a nonlocal boundary term, J. Comput. Appl. Math. 233(12) (2010), 3130–3138.
  • 12 M. Slodicka, Semilinear parabolic problems with nonlocal Dirichlet boundary conditions, Inverse. Prob. Sci. Eng. 19(5) (2011), 705–716.
  • 13 T. Zhao, C. Li, Z. Zang and Y. Wu, Chebyshev–Legendre pseudo-spectral method for the generalised Burgers–Fisher equation, Appl. Math. Model. 36(3)(2012), 1046–1056.

On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition

Yıl 2020, Cilt: 3 Sayı: 1, 11 - 18, 15.12.2020

Öz

A semilinear pseudo-parabolic equation ∂t(u − ∆u) − ∆u = f(∇u) with a Dirichlet-type integral boundary condition is investigated in this contribution. Using the Rothe method which is based on a semi-discretization of the problem under consideration with respect to the time variable, we prove the existence and uniqueness of a solution in a weak sense. For the spatial discretization, a suitable approach based on Legendre spectral-method is presented. Two numerical examples are included to examine the effectiveness and accuracy of the proposed approach.

Kaynakça

  • 1 A. Bouziani, N. Merazga, and S. Benamira, Galerkin method applied to a parabolic evolution problem with nonlocal boundary conditions, Nonlin. Anal. 69 (2008), 1515–1524.
  • 2 S. Cohn, K. Pfabe, and J. Redepenning, A similarity solution to a problem in nonlinear ion transport with a nonlocal condition, Math. Models Methods Appl. Sci. 9(3) (1999), 445–461.
  • 3 W.A. Day, Extensions of a property of the heat equation to linear thermoelasticity and other theories, Q. Appl. Math. 40 (1982), 319–330.
  • 4 W.A. Day, A decreasing property of solutions of parabolic equations with applications to thermoelasticity, Q. Appl. Math. 41 (1983), 468–475.
  • 5 A. Hasanov, B. Pektas, and S. Hasanoglu, An analysis of nonlinear ion transport model including diffusion and migration, J. Math. Chem. 46(4) (2009), 1188–1202.
  • 6 L. Hu, L. Ma and J. Shen, Efficient spectral-Galerkin method and analysis for elliptic PDEs with non-local boundary conditions, J. Sci. Compu. 68(2) (2016), 417–437.
  • 7 A. Guezane-Lakoud, D. Belakroum , Time-discretization schema for an integrodifferential Sobolev type equation with integral conditions, App. Math. Compu. 212 (2012), 4695–4702.
  • 8 J. Kacur, Method of Rothe in Evolution Equations, Teubner Texte zur Mathematik., Teubner, Leipzig, 1985.
  • 9 A. Merad, A. Bouziani and S. Araci, Existence and uniqueness for a solution of pseudohyperbolic equation with nonlocal noundary condition, Appl. Math. Inf. Sci. 9(4) (2015), 1855–1861.
  • 10 M. Slodicka and S. Dehilis, A numerical approach for a semilinear parabolic equation with a nonlocal boundary condition, J. Comput. Appl. Math. 231 (2009), 715–724.
  • 11 M. Slodicka and S. Dehilis, A nonlinear parabolic equation with a nonlocal boundary term, J. Comput. Appl. Math. 233(12) (2010), 3130–3138.
  • 12 M. Slodicka, Semilinear parabolic problems with nonlocal Dirichlet boundary conditions, Inverse. Prob. Sci. Eng. 19(5) (2011), 705–716.
  • 13 T. Zhao, C. Li, Z. Zang and Y. Wu, Chebyshev–Legendre pseudo-spectral method for the generalised Burgers–Fisher equation, Appl. Math. Model. 36(3)(2012), 1046–1056.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Abdeldjalil Chattouh

Khaled Saoudi Bu kişi benim

Yayımlanma Tarihi 15 Aralık 2020
Kabul Tarihi 1 Ekim 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Chattouh, A., & Saoudi, K. (2020). On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology, 3(1), 11-18.
AMA Chattouh A, Saoudi K. On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology. Aralık 2020;3(1):11-18.
Chicago Chattouh, Abdeldjalil, ve Khaled Saoudi. “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”. Conference Proceedings of Science and Technology 3, sy. 1 (Aralık 2020): 11-18.
EndNote Chattouh A, Saoudi K (01 Aralık 2020) On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology 3 1 11–18.
IEEE A. Chattouh ve K. Saoudi, “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”, Conference Proceedings of Science and Technology, c. 3, sy. 1, ss. 11–18, 2020.
ISNAD Chattouh, Abdeldjalil - Saoudi, Khaled. “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”. Conference Proceedings of Science and Technology 3/1 (Aralık 2020), 11-18.
JAMA Chattouh A, Saoudi K. On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology. 2020;3:11–18.
MLA Chattouh, Abdeldjalil ve Khaled Saoudi. “On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition”. Conference Proceedings of Science and Technology, c. 3, sy. 1, 2020, ss. 11-18.
Vancouver Chattouh A, Saoudi K. On the Numerical Solution of a Semilinear Sobolev Equation Subject to Nonlocal Dirichlet Boundary Condition. Conference Proceedings of Science and Technology. 2020;3(1):11-8.