Konferans Bildirisi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 3 Sayı: 1, 160 - 165, 15.12.2020

Öz

Kaynakça

  • 1 S. Banach, Sur les operations dans les ensembles abstrait et leur application aux equations integrals, Fundam. Math. 3 (1922), 133-181.
  • 2 R.K. Bisht, R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445(2) (2017) 1239-1242.
  • 3 J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Am. Math. Soc. 215 (1976), 241-251.
  • 4 U. Çelik, N. Özgür, A new solution to the discontinuity problem on metric spaces, Turk. J. Math. 44 (2020), 1115-1126.
  • 5 Lj. B. Ciric, A generalization of Banach’s contraction principle, Proc. Am. Math. Soc. 45(2) (1974), 267-273.
  • 6 L. J. Cromme, I. Diener, Fixed point theorems for discontinuous mapping, Math. Program. 51(1-3) (1991), 257-267.
  • 7 T. Dosenovic, S. Radenovic, S. Sedghi, Generalized metric spaces: survey, TWMS J. Pure Appl. Math. 9(1) (2018), 3-17.
  • 8 E. Karapınar, F. Khojasteh, W. Shatanawia, Revisiting Ciric-Type Contraction with Caristi’s Approach, Symmetry 11 (2019), 726.
  • 9 F. Khojasteh, S. Shukla, S. Radenovi´c, A new approach to the study of fixed point theory for simulation functions, Filomat 29(6) (2015), 1189-1194.
  • 10 A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
  • 11 N. Y. Özgür, N. Ta¸s, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conference Proceedings 1926 (2018), 020048.
  • 12 N. Y. Özgür, N. Ta¸s, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42(4) (2019), 1433-1449.
  • 13 N. Y. Özgür, Fixed-disc results via simulation functions, Turk. J. Math. 43(6) (2019), 2794-2805.
  • 14 R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240(1) (1999), 284-289.
  • 15 A. Pant, R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31(11) (2017), 3501-3506.
  • 16 R. P. Pant, N. Y. Özgür, N. Ta¸s, Discontinuity at fixed points with applications, Bull. Belg. Math. Soc. - Simon Stevin 26 (2019), 571-589.
  • 17 R. P. Pant, N. Y. Özgür, N. Ta¸s, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43(1) (2020), 499-517.
  • 18 M. Rashid, I. Batool, N. Mehmood, Discontinuous mappings at their fixed points and common fixed points with applications, J. Math. Anal. 9(1) (2018), 90-104.
  • 19 B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Am. Math. Soc. 226 (1977), 257-290.
  • 20 B. E. Rhoades, Contractive definitions and continuity, Contemp. Math. 72 (1988), 233-245.
  • 21 N. Ta¸s, N. Y. Özgür, A new contribution to discontinuity at fixed point, Fixed Point Theory 20(2) (2019), 715-728.
  • 22 N. Ta¸s, N. Y. Özgür, N. Mlaiki, New types of FC-contractions and the fixed-circle problem, Mathematics 6(10) (2018), 188.
  • 23 N. Ta¸s, Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turk. J. Math. 44 (2020), 1330-1344.
  • 24 M. J. Todd, The computation of fixed points and applications, Berlin, Heidelberg, New York: Springer-Verlag, 1976.
  • 25 D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94.

New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem

Yıl 2020, Cilt: 3 Sayı: 1, 160 - 165, 15.12.2020

Öz

Recently, the Rhoades' open problem which is related to the discontinuity at fixed point of a self-mapping and the fixed-circle problem which is related to the geometric meaning of the set of fixed points of a self-mapping have been studied using various approaches. Therefore, in this paper, we give some solutions to the Rhoades' open problem and the fixed-circle problem on metric spaces. To do this, we inspire from the
Meir-Keeler type, Ciric type and Caristi type fixed-point theorems. Also, we use the simulation functions and Wardowski's technique to obtain new fixed-circle results.

Kaynakça

  • 1 S. Banach, Sur les operations dans les ensembles abstrait et leur application aux equations integrals, Fundam. Math. 3 (1922), 133-181.
  • 2 R.K. Bisht, R. P. Pant, A remark on discontinuity at fixed point, J. Math. Anal. Appl. 445(2) (2017) 1239-1242.
  • 3 J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Am. Math. Soc. 215 (1976), 241-251.
  • 4 U. Çelik, N. Özgür, A new solution to the discontinuity problem on metric spaces, Turk. J. Math. 44 (2020), 1115-1126.
  • 5 Lj. B. Ciric, A generalization of Banach’s contraction principle, Proc. Am. Math. Soc. 45(2) (1974), 267-273.
  • 6 L. J. Cromme, I. Diener, Fixed point theorems for discontinuous mapping, Math. Program. 51(1-3) (1991), 257-267.
  • 7 T. Dosenovic, S. Radenovic, S. Sedghi, Generalized metric spaces: survey, TWMS J. Pure Appl. Math. 9(1) (2018), 3-17.
  • 8 E. Karapınar, F. Khojasteh, W. Shatanawia, Revisiting Ciric-Type Contraction with Caristi’s Approach, Symmetry 11 (2019), 726.
  • 9 F. Khojasteh, S. Shukla, S. Radenovi´c, A new approach to the study of fixed point theory for simulation functions, Filomat 29(6) (2015), 1189-1194.
  • 10 A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
  • 11 N. Y. Özgür, N. Ta¸s, Some fixed-circle theorems and discontinuity at fixed circle, AIP Conference Proceedings 1926 (2018), 020048.
  • 12 N. Y. Özgür, N. Ta¸s, Some fixed-circle theorems on metric spaces, Bull. Malays. Math. Sci. Soc. 42(4) (2019), 1433-1449.
  • 13 N. Y. Özgür, Fixed-disc results via simulation functions, Turk. J. Math. 43(6) (2019), 2794-2805.
  • 14 R. P. Pant, Discontinuity and fixed points, J. Math. Anal. Appl. 240(1) (1999), 284-289.
  • 15 A. Pant, R. P. Pant, Fixed points and continuity of contractive maps, Filomat 31(11) (2017), 3501-3506.
  • 16 R. P. Pant, N. Y. Özgür, N. Ta¸s, Discontinuity at fixed points with applications, Bull. Belg. Math. Soc. - Simon Stevin 26 (2019), 571-589.
  • 17 R. P. Pant, N. Y. Özgür, N. Ta¸s, On discontinuity problem at fixed point, Bull. Malays. Math. Sci. Soc. 43(1) (2020), 499-517.
  • 18 M. Rashid, I. Batool, N. Mehmood, Discontinuous mappings at their fixed points and common fixed points with applications, J. Math. Anal. 9(1) (2018), 90-104.
  • 19 B. E. Rhoades, A comparison of various definitions of contractive mappings, Trans. Am. Math. Soc. 226 (1977), 257-290.
  • 20 B. E. Rhoades, Contractive definitions and continuity, Contemp. Math. 72 (1988), 233-245.
  • 21 N. Ta¸s, N. Y. Özgür, A new contribution to discontinuity at fixed point, Fixed Point Theory 20(2) (2019), 715-728.
  • 22 N. Ta¸s, N. Y. Özgür, N. Mlaiki, New types of FC-contractions and the fixed-circle problem, Mathematics 6(10) (2018), 188.
  • 23 N. Ta¸s, Bilateral-type solutions to the fixed-circle problem with rectified linear units application, Turk. J. Math. 44 (2020), 1330-1344.
  • 24 M. J. Todd, The computation of fixed points and applications, Berlin, Heidelberg, New York: Springer-Verlag, 1976.
  • 25 D. Wardowski, Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl. 2012 (2012), 94.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Articles
Yazarlar

Nihal Taş

Yayımlanma Tarihi 15 Aralık 2020
Kabul Tarihi 24 Eylül 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 3 Sayı: 1

Kaynak Göster

APA Taş, N. (2020). New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem. Conference Proceedings of Science and Technology, 3(1), 160-165.
AMA Taş N. New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem. Conference Proceedings of Science and Technology. Aralık 2020;3(1):160-165.
Chicago Taş, Nihal. “New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem”. Conference Proceedings of Science and Technology 3, sy. 1 (Aralık 2020): 160-65.
EndNote Taş N (01 Aralık 2020) New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem. Conference Proceedings of Science and Technology 3 1 160–165.
IEEE N. Taş, “New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem”, Conference Proceedings of Science and Technology, c. 3, sy. 1, ss. 160–165, 2020.
ISNAD Taş, Nihal. “New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem”. Conference Proceedings of Science and Technology 3/1 (Aralık 2020), 160-165.
JAMA Taş N. New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem. Conference Proceedings of Science and Technology. 2020;3:160–165.
MLA Taş, Nihal. “New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem”. Conference Proceedings of Science and Technology, c. 3, sy. 1, 2020, ss. 160-5.
Vancouver Taş N. New Answers to the Rhoades’ Open Problem and the Fixed-Circle Problem. Conference Proceedings of Science and Technology. 2020;3(1):160-5.