AIM: The aim of this study was to investigate the effect of galangin, which is known to have anti-inflammatory and antioxidant properties, on cell proliferation and migration in a scratch wound healing model in L929 cell line.
MATERIALS AND METHODS: In this study, we investigated the effects of different concentrations of galangin on cell proliferation and viability in L929 cell line using MTT method. We then examined the effects of different concentrations of galangin on wound closure in the wound line created by scratch wound healing test. At 0, 12, 24 and 36 hours, microscopic images of the wound line were taken. Wound closure rates were calculated and percent wound closure graph was created. At the end of our study, TGF-β levels of all groups were measured using ELISA kits.
RESULTS: According to the viability percentages determined by MTT method in L929 cells, 10, 25 and 50 µM concentrations of galangin significantly increased cell viability at 24, 48 and 72 hours. In the scratch wound healing model in which these 3 concentrations of galangin were applied as treatment, it was observed that 25 and 50 µM concentrations of galangin showed a near complete closure at the end of the experiment. When the measured TGF-β levels were analyzed, a significant decrease was observed in the galangin-treated groups compared to the control group.
CONCLUSION: In the in vitro scratch wound healing model, the observed reduction in TGF-β levels at the conclusion of the experiment in the galangin-treated groups, compared to the control group, suggests that the healing process is nearing completion, resulting in a concomitant decrease in cytokine release. These findings are consistent with the percentage closure rates assessed microscopically across the different treatment groups.
Berman, B., Maderal, A., & Raphael, B. (2017). Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment. Dermatologic Surgery, 43, S3-S18. https://doi.org/10.1097/Dss.0000000000000819
Bielefeld, K. A., Amini-Nik, S., & Alman, B. A. (2013). Cutaneous wound healing: recruiting developmental pathways for regeneration. Cellular and Molecular Life Sciences, 70(12), 2059-2081. https://doi.org/10.1007/s00018-012-1152-9
Bochaton-Piallat, M. L., Gabbiani, G., & Hinz, B. (2016). The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Res, 5. https://doi.org/10.12688/f1000research.8190.1
Borges, G. A., Elias, S. T., da Silva, S. M., Magalhaes, P. O., Macedo, S. B., Ribeiro, A. P., & Guerra, E. N. (2017). In vitro evaluation of wound healing and antimicrobial potential of ozone therapy. J Craniomaxillofac Surg, 45(3), 364-370. https://doi.org/10.1016/j.jcms.2017.01.005
Cangul, S., Adiguzel, O., & Tekin, S. (2020). Comparison of Cytotoxicity of Four Different Adhesive Materials Before and After Polymerisation. Oral Health & Preventive Dentistry, 18(1), 43-51. https://doi.org/10.3290/j.ohpd.a43940
Cao, Y. C., Hu, J. L., Sui, J. Y., Jiang, L. M., Cong, Y. K., & Ren, G. Q. (2018). Quercetin is able to alleviate TGF--induced fibrosis in renal tubular epithelial cells by suppressing miR-21. Experimental and Therapeutic Medicine, 16(3), 2442-2448. https://doi.org/10.3892/etm.2018.6489
Cory, G. (2011). Scratch-Wound Assay. Cell Migration: Developmental Methods and Protocols, Second Edition, 769, 25-30. https://doi.org/10.1007/978-1-61779-207-6_2
Darby, I. A., & Hewitson, T. D. (2007). Fibroblast differentiation in wound healing and fibrosis. International Review of Cytology - a Survey of Cell Biology, Vol 257, 257, 143-+.
https://doi.org/10.1016/S0074-7696(07)57004-X
De Jesus, A. M., Aghvami, M., & Sander, E. A. (2016). A Combined In Vitro Imaging and Multi-Scale Modeling System for Studying the Role of Cell Matrix Interactions in Cutaneous Wound Healing. Plos One, 11(2).
https://doi.org/ARTN e014825410.1371/journal.pone.0148254
Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol, 122(1), 103-111. https://doi.org/10.1083/jcb.122.1.103
El Ayadi, A., Jay, J. W., & Prasai, A. (2020). Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci, 21(3). https://doi.org/10.3390/ijms21031105
Everts, P. A., Knape, J. T., Weibrich, G., Schonberger, J. P., Hoffmann, J., Overdevest, E. P., Box, H. A., & van Zundert, A. (2006). Platelet-rich plasma and platelet gel: a review. J Extra Corpor Technol, 38(2), 174-187. https://www.ncbi.nlm.nih.gov/pubmed/16921694
Greenwel, P., Inagaki, Y., Hu, W., Walsh, M., & Ramirez, F. (1997). Sp1 is required for the early response of alpha 2(I) collagen to transforming growth factor-beta 1. Journal of Biological Chemistry, 272(32), 19738-19745.
https://doi.org/DOI10.1074/jbc.272.32.19738
Hecker, A., Schellnegger, M., Hofmann, E., Luze, H., Nischwitz, S. P., Kamolz, L. P., & Kotzbeck, P. (2022). The impact of resveratrol on skin wound healing, scarring, and aging. International Wound Journal, 19(1), 9-28. https://doi.org/10.1111/iwj.13601
Hosokawa, R., Nonaka, K., Morifuji, M., Shum, L., & Ohishi, M. (2003). TGF-beta 3 decreases type I collagen and scarring after labioplasty. J Dent Res, 82(7), 558-564. https://doi.org/10.1177/154405910308200714
Jagiello, K., Uchanska, O., Matyja, K., Jackowski, M., Wiatrak, B., Kubasiewicz-Ross, P., & Karuga-Kuzniewska, E. (2023). Supporting the Wound Healing Process-Curcumin, Resveratrol and Baicalin in In Vitro Wound Healing Studies. Pharmaceuticals, 16(1). https://doi.org/ARTN 8210.3390/ph16010082
Kane, C. J. M., Hebda, P. A., Mansbridge, J. N., & Hanawalt, P. C. (1991). Direct Evidence for Spatial and Temporal Regulation of Transforming Growth-Factor Beta-1 Expression during Cutaneous Wound-Healing. Journal of Cellular Physiology, 148(1), 157-173. https://doi.org/DOI 10.1002/jcp.1041480119
Kant, V., Gopal, A., Kumar, D., Pathak, N. N., Ram, M., Jangir, B. L., Tandan, S. K., & Kumar, D. (2015). Curcumin-induced angiogenesis hastens wound healing in diabetic rats. Journal of Surgical Research, 193(2), 978-988. https://doi.org/10.1016/j.jss.2014.10.019
Kopecki, Z., Luchetti, M. M., Adams, D. H., Strudwick, X., Mantamadiotis, T., Stoppacciaro, A., Gabrielli, A., Ramsay, R. G., & Cowin, A. J. (2007). Collagen loss and impaired wound healing is associated with c-Myb deficiency. Journal of Pathology, 211(3), 351-361. https://doi.org/10.1002/path.2113
Mauviel, A., Chung, K. Y., Agarwal, A., Tamai, K., & Uitto, J. (1996). Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-beta in fibroblasts and keratinocytes. Journal of Biological Chemistry, 271(18), 10917-10923. https://doi.org/DOI 10.1074/jbc.271.18.10917
Meckmongkol, T. T., Harmon, R., McKeown-Longo, P., & Van De Water, L. (2007). The fibronectin synergy site modulates TGF-beta-dependent fibroblast contraction. Biochem Biophys Res Commun, 360(4), 709-714. https://doi.org/10.1016/j.bbrc.2007.06.121
Nogueira, B. C. F., Campos, A. K., Alves, R. S., Sarandy, M. M., Novaes, R. M. D., Esposito, D., & Goncalves, R. V. (2020). What Is the Impact of Depletion of Immunoregulatory Genes on Wound Healing? A Systematic Review of Preclinical Evidence. Oxidative Medicine and Cellular Longevity, 2020.
https://doi.org/Artn886295310.1155/2020/8862953
Ozdemir, K. G., Yilmaz, H., & Yilmaz, S. (2009). In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J Biomed Mater Res B Appl Biomater, 90(1), 82-86. https://doi.org/10.1002/jbm.b.31256
Pinto, B. I., Cruz, N. D., Lujan, O. R., Propper, C. R., & Kellar, R. S. (2019). Scratch Assay to Demonstrate Effects of Arsenic on Skin Cell Migration. Jove-Journal of Visualized Experiments(144). https://doi.org/ARTNe5883810.3791/58838
Plikus, M. V., Guerrero-Juarez, C. F., Ito, M., Li, Y. R., Dedhia, P. H., Zheng, Y., Shao, M., Gay, D. L., Ramos, R., Hsi, T. C., Oh, J. W., Wang, X. J., Ramirez, A., Konopelski, S. E., Elzein, A., Wang, A., Supapannachart, R. J., Lee, H. L., Lim, C. H., . . . Cotsarelis, G. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science, 355(6326), 748-+. https://doi.org/10.1126/science.aai8792
Proksch, E., Brandner, J. M., & Jensen, J. M. (2008). The skin: an indispensable barrier. Experimental Dermatology, 17(12), 1063-1072. https://doi.org/10.1111/j.1600-0625.2008.00786.x
Ramirez, H., Patel, S. B., & Pastar, I. (2014). The Role of TGFβ Signaling in Wound Epithelialization. Advances in Wound Care, 3(7), 482-491. https://doi.org/10.1089/wound.2013.0466
Rampogu, S., Gajula, R. G., & Lee, K. W. (2021). A comprehensive review on chemotherapeutic potential of galangin. Biomedicine & Pharmacotherapy, 141.
https://doi.org/ARTN 11180810.1016/j.biopha.2021.111808
Richardson, M. (2004). Acute wounds: an overview of the physiological healing process. Nurs Times, 100(4), 50-53. https://www.ncbi.nlm.nih.gov/pubmed/14974265
Ronnov-Jessen, L., & Petersen, O. W. (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest, 68(6), 696-707. https://www.ncbi.nlm.nih.gov/pubmed/8515656
Ru, Z., Hu, Y., Huang, S. H., Bai, L., Zhang, K., & Li, Y. (2021). Bioflavonoid Suppresses Hypertrophic Scar Formation by the TGF-/Smad Signaling Pathway. Evidence-Based Complementary and Alternative Medicine, 2021.
https://doi.org/Artn 244483910.1155/2021/2444839
Teplicki, E., Ma, Q., Castillo, D. E., Zarei, M., Hustad, A. P., Chen, J., & Li, J. (2018). The Effects of Aloe vera on Wound Healing in Cell Proliferation, Migration, and Viability. Wounds, 30(9), 263-268. https://www.ncbi.nlm.nih.gov/pubmed/30256753
Tsai, H.-W., Wang, P.-H., & Tsui, K.-H. (2018). Mesenchymal stem cell in wound healing and regeneration. In (Vol. 81, pp. 223-224): LWW.
Wang, P.-H., Huang, B.-S., Horng, H.-C., Yeh, C.-C., & Chen, Y.-J. (2018). Wound healing. Journal of the Chinese Medical Association, 81(2), 94-101. https://doi.org/10.1016/j.jcma.2017.11.002
White, L. A., Mitchell, T. I., & Brinckerhoff, C. E. (2000). Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1490(3), 259-268.
https://doi.org/Doi 10.1016/S0167-4781(00)00002-6
Yan, Y., You, A. J., Chen, X. X., Huang, W. Y., Lu, X. T., Gu, C. J., Ye, S., Zhong, J., Huang, H. T., Zhao, Y., Li, Y., & Li, C. (2024). (+)4-cholesten-3-one/sodium alginate/gelatin hydrogel for full-thickness wound repair and skin regeneration. Biomedical Materials, 19(5).
https://doi.org/ARTN 05502610.1088/1748-605X/ad6966
Yu, S., Gong, L. S., Li, N. F., Pan, Y. F., & Zhang, L. (2018). Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomedicine & Pharmacotherapy, 97, 213-224. https://doi.org/10.1016/j.biopha.2017.10.059
Berman, B., Maderal, A., & Raphael, B. (2017). Keloids and Hypertrophic Scars: Pathophysiology, Classification, and Treatment. Dermatologic Surgery, 43, S3-S18. https://doi.org/10.1097/Dss.0000000000000819
Bielefeld, K. A., Amini-Nik, S., & Alman, B. A. (2013). Cutaneous wound healing: recruiting developmental pathways for regeneration. Cellular and Molecular Life Sciences, 70(12), 2059-2081. https://doi.org/10.1007/s00018-012-1152-9
Bochaton-Piallat, M. L., Gabbiani, G., & Hinz, B. (2016). The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Res, 5. https://doi.org/10.12688/f1000research.8190.1
Borges, G. A., Elias, S. T., da Silva, S. M., Magalhaes, P. O., Macedo, S. B., Ribeiro, A. P., & Guerra, E. N. (2017). In vitro evaluation of wound healing and antimicrobial potential of ozone therapy. J Craniomaxillofac Surg, 45(3), 364-370. https://doi.org/10.1016/j.jcms.2017.01.005
Cangul, S., Adiguzel, O., & Tekin, S. (2020). Comparison of Cytotoxicity of Four Different Adhesive Materials Before and After Polymerisation. Oral Health & Preventive Dentistry, 18(1), 43-51. https://doi.org/10.3290/j.ohpd.a43940
Cao, Y. C., Hu, J. L., Sui, J. Y., Jiang, L. M., Cong, Y. K., & Ren, G. Q. (2018). Quercetin is able to alleviate TGF--induced fibrosis in renal tubular epithelial cells by suppressing miR-21. Experimental and Therapeutic Medicine, 16(3), 2442-2448. https://doi.org/10.3892/etm.2018.6489
Cory, G. (2011). Scratch-Wound Assay. Cell Migration: Developmental Methods and Protocols, Second Edition, 769, 25-30. https://doi.org/10.1007/978-1-61779-207-6_2
Darby, I. A., & Hewitson, T. D. (2007). Fibroblast differentiation in wound healing and fibrosis. International Review of Cytology - a Survey of Cell Biology, Vol 257, 257, 143-+.
https://doi.org/10.1016/S0074-7696(07)57004-X
De Jesus, A. M., Aghvami, M., & Sander, E. A. (2016). A Combined In Vitro Imaging and Multi-Scale Modeling System for Studying the Role of Cell Matrix Interactions in Cutaneous Wound Healing. Plos One, 11(2).
https://doi.org/ARTN e014825410.1371/journal.pone.0148254
Desmouliere, A., Geinoz, A., Gabbiani, F., & Gabbiani, G. (1993). Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol, 122(1), 103-111. https://doi.org/10.1083/jcb.122.1.103
El Ayadi, A., Jay, J. W., & Prasai, A. (2020). Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int J Mol Sci, 21(3). https://doi.org/10.3390/ijms21031105
Everts, P. A., Knape, J. T., Weibrich, G., Schonberger, J. P., Hoffmann, J., Overdevest, E. P., Box, H. A., & van Zundert, A. (2006). Platelet-rich plasma and platelet gel: a review. J Extra Corpor Technol, 38(2), 174-187. https://www.ncbi.nlm.nih.gov/pubmed/16921694
Greenwel, P., Inagaki, Y., Hu, W., Walsh, M., & Ramirez, F. (1997). Sp1 is required for the early response of alpha 2(I) collagen to transforming growth factor-beta 1. Journal of Biological Chemistry, 272(32), 19738-19745.
https://doi.org/DOI10.1074/jbc.272.32.19738
Hecker, A., Schellnegger, M., Hofmann, E., Luze, H., Nischwitz, S. P., Kamolz, L. P., & Kotzbeck, P. (2022). The impact of resveratrol on skin wound healing, scarring, and aging. International Wound Journal, 19(1), 9-28. https://doi.org/10.1111/iwj.13601
Hosokawa, R., Nonaka, K., Morifuji, M., Shum, L., & Ohishi, M. (2003). TGF-beta 3 decreases type I collagen and scarring after labioplasty. J Dent Res, 82(7), 558-564. https://doi.org/10.1177/154405910308200714
Jagiello, K., Uchanska, O., Matyja, K., Jackowski, M., Wiatrak, B., Kubasiewicz-Ross, P., & Karuga-Kuzniewska, E. (2023). Supporting the Wound Healing Process-Curcumin, Resveratrol and Baicalin in In Vitro Wound Healing Studies. Pharmaceuticals, 16(1). https://doi.org/ARTN 8210.3390/ph16010082
Kane, C. J. M., Hebda, P. A., Mansbridge, J. N., & Hanawalt, P. C. (1991). Direct Evidence for Spatial and Temporal Regulation of Transforming Growth-Factor Beta-1 Expression during Cutaneous Wound-Healing. Journal of Cellular Physiology, 148(1), 157-173. https://doi.org/DOI 10.1002/jcp.1041480119
Kant, V., Gopal, A., Kumar, D., Pathak, N. N., Ram, M., Jangir, B. L., Tandan, S. K., & Kumar, D. (2015). Curcumin-induced angiogenesis hastens wound healing in diabetic rats. Journal of Surgical Research, 193(2), 978-988. https://doi.org/10.1016/j.jss.2014.10.019
Kopecki, Z., Luchetti, M. M., Adams, D. H., Strudwick, X., Mantamadiotis, T., Stoppacciaro, A., Gabrielli, A., Ramsay, R. G., & Cowin, A. J. (2007). Collagen loss and impaired wound healing is associated with c-Myb deficiency. Journal of Pathology, 211(3), 351-361. https://doi.org/10.1002/path.2113
Mauviel, A., Chung, K. Y., Agarwal, A., Tamai, K., & Uitto, J. (1996). Cell-specific induction of distinct oncogenes of the Jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-beta in fibroblasts and keratinocytes. Journal of Biological Chemistry, 271(18), 10917-10923. https://doi.org/DOI 10.1074/jbc.271.18.10917
Meckmongkol, T. T., Harmon, R., McKeown-Longo, P., & Van De Water, L. (2007). The fibronectin synergy site modulates TGF-beta-dependent fibroblast contraction. Biochem Biophys Res Commun, 360(4), 709-714. https://doi.org/10.1016/j.bbrc.2007.06.121
Nogueira, B. C. F., Campos, A. K., Alves, R. S., Sarandy, M. M., Novaes, R. M. D., Esposito, D., & Goncalves, R. V. (2020). What Is the Impact of Depletion of Immunoregulatory Genes on Wound Healing? A Systematic Review of Preclinical Evidence. Oxidative Medicine and Cellular Longevity, 2020.
https://doi.org/Artn886295310.1155/2020/8862953
Ozdemir, K. G., Yilmaz, H., & Yilmaz, S. (2009). In vitro evaluation of cytotoxicity of soft lining materials on L929 cells by MTT assay. J Biomed Mater Res B Appl Biomater, 90(1), 82-86. https://doi.org/10.1002/jbm.b.31256
Pinto, B. I., Cruz, N. D., Lujan, O. R., Propper, C. R., & Kellar, R. S. (2019). Scratch Assay to Demonstrate Effects of Arsenic on Skin Cell Migration. Jove-Journal of Visualized Experiments(144). https://doi.org/ARTNe5883810.3791/58838
Plikus, M. V., Guerrero-Juarez, C. F., Ito, M., Li, Y. R., Dedhia, P. H., Zheng, Y., Shao, M., Gay, D. L., Ramos, R., Hsi, T. C., Oh, J. W., Wang, X. J., Ramirez, A., Konopelski, S. E., Elzein, A., Wang, A., Supapannachart, R. J., Lee, H. L., Lim, C. H., . . . Cotsarelis, G. (2017). Regeneration of fat cells from myofibroblasts during wound healing. Science, 355(6326), 748-+. https://doi.org/10.1126/science.aai8792
Proksch, E., Brandner, J. M., & Jensen, J. M. (2008). The skin: an indispensable barrier. Experimental Dermatology, 17(12), 1063-1072. https://doi.org/10.1111/j.1600-0625.2008.00786.x
Ramirez, H., Patel, S. B., & Pastar, I. (2014). The Role of TGFβ Signaling in Wound Epithelialization. Advances in Wound Care, 3(7), 482-491. https://doi.org/10.1089/wound.2013.0466
Rampogu, S., Gajula, R. G., & Lee, K. W. (2021). A comprehensive review on chemotherapeutic potential of galangin. Biomedicine & Pharmacotherapy, 141.
https://doi.org/ARTN 11180810.1016/j.biopha.2021.111808
Richardson, M. (2004). Acute wounds: an overview of the physiological healing process. Nurs Times, 100(4), 50-53. https://www.ncbi.nlm.nih.gov/pubmed/14974265
Ronnov-Jessen, L., & Petersen, O. W. (1993). Induction of alpha-smooth muscle actin by transforming growth factor-beta 1 in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest, 68(6), 696-707. https://www.ncbi.nlm.nih.gov/pubmed/8515656
Ru, Z., Hu, Y., Huang, S. H., Bai, L., Zhang, K., & Li, Y. (2021). Bioflavonoid Suppresses Hypertrophic Scar Formation by the TGF-/Smad Signaling Pathway. Evidence-Based Complementary and Alternative Medicine, 2021.
https://doi.org/Artn 244483910.1155/2021/2444839
Teplicki, E., Ma, Q., Castillo, D. E., Zarei, M., Hustad, A. P., Chen, J., & Li, J. (2018). The Effects of Aloe vera on Wound Healing in Cell Proliferation, Migration, and Viability. Wounds, 30(9), 263-268. https://www.ncbi.nlm.nih.gov/pubmed/30256753
Tsai, H.-W., Wang, P.-H., & Tsui, K.-H. (2018). Mesenchymal stem cell in wound healing and regeneration. In (Vol. 81, pp. 223-224): LWW.
Wang, P.-H., Huang, B.-S., Horng, H.-C., Yeh, C.-C., & Chen, Y.-J. (2018). Wound healing. Journal of the Chinese Medical Association, 81(2), 94-101. https://doi.org/10.1016/j.jcma.2017.11.002
White, L. A., Mitchell, T. I., & Brinckerhoff, C. E. (2000). Transforming growth factor β inhibitory element in the rabbit matrix metalloproteinase-1 (collagenase-1) gene functions as a repressor of constitutive transcription. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1490(3), 259-268.
https://doi.org/Doi 10.1016/S0167-4781(00)00002-6
Yan, Y., You, A. J., Chen, X. X., Huang, W. Y., Lu, X. T., Gu, C. J., Ye, S., Zhong, J., Huang, H. T., Zhao, Y., Li, Y., & Li, C. (2024). (+)4-cholesten-3-one/sodium alginate/gelatin hydrogel for full-thickness wound repair and skin regeneration. Biomedical Materials, 19(5).
https://doi.org/ARTN 05502610.1088/1748-605X/ad6966
Yu, S., Gong, L. S., Li, N. F., Pan, Y. F., & Zhang, L. (2018). Galangin (GG) combined with cisplatin (DDP) to suppress human lung cancer by inhibition of STAT3-regulated NF-κB and Bcl-2/Bax signaling pathways. Biomedicine & Pharmacotherapy, 97, 213-224. https://doi.org/10.1016/j.biopha.2017.10.059
Aydın, P., Karaköy, Z., & Halıcı, H. (2024). Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay. Current Research in Health Sciences, 1(3), 99-104. https://doi.org/10.5281/zenodo.13976728
AMA
Aydın P, Karaköy Z, Halıcı H. Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay. Curr Res Health Sci. Ekim 2024;1(3):99-104. doi:10.5281/zenodo.13976728
Chicago
Aydın, Pelin, Zeynep Karaköy, ve Hamza Halıcı. “Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay”. Current Research in Health Sciences 1, sy. 3 (Ekim 2024): 99-104. https://doi.org/10.5281/zenodo.13976728.
EndNote
Aydın P, Karaköy Z, Halıcı H (01 Ekim 2024) Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay. Current Research in Health Sciences 1 3 99–104.
IEEE
P. Aydın, Z. Karaköy, ve H. Halıcı, “Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay”, Curr Res Health Sci, c. 1, sy. 3, ss. 99–104, 2024, doi: 10.5281/zenodo.13976728.
ISNAD
Aydın, Pelin vd. “Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay”. Current Research in Health Sciences 1/3 (Ekim 2024), 99-104. https://doi.org/10.5281/zenodo.13976728.
JAMA
Aydın P, Karaköy Z, Halıcı H. Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay. Curr Res Health Sci. 2024;1:99–104.
MLA
Aydın, Pelin vd. “Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay”. Current Research in Health Sciences, c. 1, sy. 3, 2024, ss. 99-104, doi:10.5281/zenodo.13976728.
Vancouver
Aydın P, Karaköy Z, Halıcı H. Evaluation of Wound Healing Potential of Galangin on L929 Mouse Fibroblast Cell Lines Using In Vitro Scratch Assay. Curr Res Health Sci. 2024;1(3):99-104.