Araştırma Makalesi
BibTex RIS Kaynak Göster

Mass Appraisal Based on Geographic Information Systems and Explainable Artificial Intelligence Using TUCBS Data

Yıl 2025, Sayı: 8, 40 - 70, 31.12.2025

Öz

This study presents a mass appraisal approach that integrates TUCBS data with Geographic Information Systems (GIS) and artificial intelligence methods to estimate residential property values in the Yenimahalle and Keçiören districts of Ankara. A total of 37,095 property sales records obtained from Endeksa were enriched with spatial layers—including Digital Elevation Model (DEM), transportation networks, education and health facilities, and Point of Interest (POI) data—acquired from TUCBS, resulting in a comprehensive dataset consisting of 34,272 residential sales records and 56 variables. Following exploratory data analysis and feature engineering, variable importance was determined using the Permutation Feature Importance (PFI) method, and variables with low contribution were removed. Eight machine learning models (Random Forest, Extra Trees, Bagging, Gradient Boosting, AdaBoost, XGBoost, LightGBM, CatBoost) were optimized using GridSearchCV and evaluated based on R², RMSE, and MAE metrics. The results show that XGBoost, LightGBM, and Random Forest achieved the highest accuracy (R² ≈ 0.91), while LightGBM provided the best balance between accuracy and computation time. The decision-making process of the models was clarified through Explainable Artificial Intelligence (XAI) techniques, with SHAP analysis revealing the directional and quantitative contributions of each feature to the predictions. Findings indicate that total floor count, gross area, building age, and floor level are the most influential determinants of residential property value. Estimated values were mapped spatially using 500 m² hexagonal grids and published via ArcGIS Server. The study demonstrates that the integration of ML–GIS–XAI can provide a transparent, scalable, and data-driven mass appraisal infrastructure, offering an effective decision-support tool for banking, property taxation, expropriation, and urban planning.

Etik Beyan

This study does not involve human or animal subjects and therefore does not require ethics committee approval.

Destekleyen Kurum

This research received no external funding.

Teşekkür

This article is derived from the author’s Master’s Thesis in Geographic Information Systems.

Kaynakça

  • Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/ ACCESS.2018.2870052
  • Botchkarev, A. (2019). A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdisciplinary Journal of Information, Knowledge, and Management, 14, 045-076. https://doi.org/10.28945/4184
  • Bühlmann, P. (2012). Bagging, Boosting and Ensemble Methods. Içinde J. E. Gentle, W. K. Härdle, & Y. Mori (Ed.), Handbook of Computational Statistics (ss. 985-1022). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21551-3_33
  • Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments. ISPRS International Journal of Geo-Information, 7(5), 168. https://doi.org/10.3390/ ijgi7050168
  • Chawla, A. (2023). A Visual and Overly Simplified Guide To Bagging and Boosting. https://blog.dailydoseofds.com/p/a-visual-and-overly-simplified-guide-4b1 Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
  • Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785 Coğrafi İstatistik Portalı. (2025). Coğrafi İstatistik Portalı. https://cip.tuik.gov.tr/
  • Çılgın, C., Gökçen, H., & Gazi University, Ankara (Turkiye). (2023). Machine learning methods for prediction real estate sales prices in Turkey. Revista de La Construcción, 22(1), 163-177. https://doi.org/10.7764/RDLC.22.1.163
  • Dimopoulos, T., & Bakas, N. (2019). Sensitivity Analysis of Machine Learning Models for the Mass Appraisal of Real Estate. Case Study of Residential Units in Nicosia, Cyprus. Remote Sensing, 11(24), 3047. https://doi.org/10.3390/rs11243047
  • Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Gabrielli, L., & French, N. (2021). Pricing to market: Property valuation methods – a practical review. Journal of Property Investment & Finance, 39(5), 464-480. https:// doi.org/10.1108/JPIF-09-2020-0101
  • Gao, Q., Shi, V., Pettit, C., & Han, H. (2022). Property Valuation Using Machine Learning Algorithms On Statistical Areas In Greater Sydney, Australia. Land Use Policy, 123, 106409. https://doi.org/10.1016/j.landusepol.2022.106409
  • Guliker, E., Folmer, E., & Van Sinderen, M. (2022). Spatial Determinants of Real Estate Appraisals in The Netherlands: A Machine Learning Approach. ISPRS International Journal of Geo-Information, 11(2), 125. https://doi.org/10.3390/ijgi11020125
  • Hjort, A., Scheel, I., Sommervoll, D. E., & Pensar, J. (2024). Locally interpretable tree boosting: An application to house price prediction. Decision Support Systems, 178, 114106. https://doi.org/10.1016/j.dss.2023.114106
  • IAAO. (2018). Standard on Mass Appraisal of Real Property [Standart]. IAAO. https:// www.iaao.org/industry-data/iaao-technical-standards/
  • İban, M. C. (2021). Taşınmaz Mal Değeri Kestiriminde Topluluk Algoritmalarının Doğruluk Analizi. 47.
  • Ja’afar, N. S., Mohamad, J., & Ismail, S. (2021). Machine Learning For Property Price Prediction And Price Valuation: A Systematic Literature Review. Planning Malasia, 19. https://doi.org/10.21837/pm.v19i17.1018
  • Krämer, B., Stang, M., Doskoč, V., Schäfers, W., & Friedrich, T. (2023). Automated valuation models: Improving model performance by choosing the optimal spatial training level. Journal of Property Research, 40(4), 365-390. https://doi.org/10.1080 /09599916.2023.2206823
  • Lin, W., Shi, Z., Wang, Y., & Yan, T. H. (2023). Unfolding Beijing in a Hedonic Way. Computational Economics, 61(1), 317-340. https://doi.org/10.1007/s10614-021-10209-3 Lundberg, S. M., Erion, G., & Chen, H. (2019). Explainable AI for Trees: From Local Explanations to Global Understanding (No. arXiv:1905.04610). arXiv. https://doi. org/10.48550/arXiv.1905.04610
  • Michae Dellstad. (2018). Comparing three machine learning algorithms in the task of appraising commercial real estate (Tez). KTH Royal Institute Of Technology School Of Electrical Engineering And Computer Science.
  • Numan, J. A. A., & Yusoff, I. M. (2024). Identifying the Current Status of Real Estate Appraisal Methods. Real Estate Management and Valuation, 32(4), 12-27. https:// doi.org/10.2478/remav-2024-0032
  • Peng, Z., Huang, Q., & Han, Y. (2019). Model Research on Forecast of Second-Hand House Price in Chengdu Based on XGboost Algorithm. 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), 168-172. https://doi. org/10.1109/icait.2019.8935894
  • Perçem, E. (2025). Proptech Odaklı Toplu Değerleme: TUCBS Verilerine Dayalı Yapay Zekâ ve Coğrafi Bilgi Sistemleri Perspektifi (Coğrafi Bilgi Sistemi Uzmanlık Tezi).
  • Plevris, V., Solorzano, G., Bakas, N., & Ben Seghier, M. (2022). Investigation of performance metrics in regression analysis and machine learning-based prediction models. 8th European Congress on Computational Methods in Applied Sciences and Engineering. 8th European Congress on Computational Methods in Applied Sciences and Engineering. https://doi.org/10.23967/eccomas.2022.155
  • Rampini, L., & Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate market prices. Journal of Property Investment & Finance, 40(6), 588-611. https://doi.org/10.1108/JPIF-08-2021-0073
  • Renigier-Biłozor, M., Źróbek, S., Walacik, M., Borst, R., Grover, R., & d’Amato, M. (2022). International acceptance of automated modern tools use must-have for sustainable real estate market development. Land Use Policy, 113, 105876. https:// doi.org/10.1016/j.landusepol.2021.105876
  • Rolli, C. S. (2020). Zillow Home value Prediction Using XGBOOST. 47.
  • Stang, M. (2023). Real Estate Valuation in the Age of Artificial Intelligence – Modern Machine Learning Algorithms and their Application in Property Appraisal [Tez]. Submitted to the Faculty of Business, Economics, and Management Information Systems at the University of Regensburg.
  • Steurer, M., Hill, R. J., & Pfeifer, N. (2021). Metrics for evaluating the performance of machine learning based automated valuation models. Journal of Property Research, 38(2), 99-129. https://doi.org/10.1080/09599916.2020.1858937
  • TDUB. (2025). Değerleme Sektörü 2025 Yılı 1. Çeyrek Raporu (Analiz Raporu). MKK Gayrimenkul Bilgi Merkezi A.Ş. https://tdub.org.tr/sayfa/degerleme-sektoru-ozet-verileri Torres-Pruñonosa, J., García-Estévez, P., & Prado-Román, C. (2021). Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing. Mathematics, 9(7), 783. https://doi.org/10.3390/math9070783
  • Vargason, D. (2019). Data Mining Techniques for Predicting Real Estate Trends.
  • Wang, D., & Li, V. J. (2019). Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review. Sustainability, 11(24), 7006. https://doi.org/10.3390/ su11247006
  • Xu, X., & Zhang, Y. (2021). House price forecasting with neural networks. Intelligent Systems with Applications, 12, 200052. https://doi.org/10.1016/j.iswa.2021.200052
  • Yagmur, A. (2025). Real Estate Valuation Decision-Making System Using Machine Learning and Geospatial Data.
  • Yang, H., Qiu, R., & Chen, W. (Ed.). (2020). Smart Service Systems, Operations Management, and Analytics: Proceedings of the 2019 INFORMS International Conference on Service Science. Springer International Publishing. https://doi. org/10.1007/978-3-030-30967-1
  • Yoshida, T., Murakami, D., & Seya, H. (2022). Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset. The Journal of Real Estate Finance and Economics, 69(1), 1-28. https://doi. org/10.1007/s11146-022-09929-6
  • Zhang, H., Li, Y., & Branco, P. (2024). Describe the house and I will tell you the price: House price prediction with textual description data. Natural Language Engineering, 30(4), 661-695. https://doi.org/10.1017/s1351324923000360

TUCBS Verileriyle Coğrafi Bilgi Sistemleri ve Açıklanabilir Yapay Zekâ Tabanlı Toplu Değerleme

Yıl 2025, Sayı: 8, 40 - 70, 31.12.2025

Öz

Bu çalışma, TUCBS verilerinin Coğrafi Bilgi Sistemleri (CBS) ve yapay zekâ yöntemleri kullanılarak Ankara’nın Yenimahalle ve Keçiören ilçelerinde konut değerlerini tahmin etmeye yönelik bir toplu değerleme yaklaşımı sunmaktadır. Endeksa’dan elde edilen 37.095 konut satış verisi; TUCBS’den temin edilen sayısal yükseklik modeli (DEM), ulaşım, eğitim, sağlık tesisleri ve ilgi noktaları (POI) gibi katmanlar analiz edilerek mekânsal verilerle zenginleştirilmiş ve 34.272 konut satış kaydı ile 56 değişkenden oluşan kapsamlı bir veri seti oluşturulmuştur. Keşifsel veri analizi ve özellik mühendisliği sonrasında Permütasyon Özellik Önemi (PFI) yöntemiyle değişken önemi belirlenmiş, katkısı düşük değişkenler çıkarılmıştır. Sekiz makine öğrenmesi modeli (Random Forest, Extra Trees, Bagging, Gradient Boosting, AdaBoost, XGBoost, LightGBM, CatBoost) GridSearchCV kullanılarak optimize edilmiş ve performansları R², RMSE ve MAE metrikleri üzerinden değerlendirilmiştir. Sonuçlar, XGBoost, LightGBM ve Random Forest modellerinin en yüksek doğruluğu sağladığını (R² ≈ 0.91), LightGBM’in ise doğruluk-zaman dengesi bakımından en uygun model olduğunu göstermiştir. Modelin karar mekanizması; açıklanabilir yapay zekâ (XAI) teknikleriyle şeffaflaştırılmış, SHAP analizi ile her bir özelliğin tahmine yönlü ve nicel etkilerini açıklamıştır. Bulgular; toplam kat sayısı, brüt alan, bina yaşı ve bulunduğu kat değişkenlerinin konut değeri üzerinde en belirleyici faktörler olduğunu göstermektedir. Elde edilen değerler 500 m²lik altıgen ızgara yöntemiyle mekânsal olarak haritalandırılıp ArcGIS Server üzerinden servis edilmiştir. Çalışma, ML-GIS-XAI entegrasyonuyla şeffaf, ölçeklenebilir ve veri odaklı bir toplu değerleme altyapısı oluşturulabileceğini ve bu yaklaşımın bankacılık, emlak vergisi, kamulaştırma ve kentsel planlama gibi alanlarda etkili bir karar destek aracı sağlayabileceğini göstermektedir.

Etik Beyan

Bu çalışma insan ya da hayvan denek kullanılmadığı için etik kurul onayı gerektirmemektedir.

Destekleyen Kurum

Yoktur.

Teşekkür

Bu makale, yazarın Coğrafi Bilgi Sistemleri Uzmanlık Tezi’nden türetilmiştir.

Kaynakça

  • Adadi, A., & Berrada, M. (2018). Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI). IEEE Access, 6, 52138-52160. https://doi.org/10.1109/ ACCESS.2018.2870052
  • Botchkarev, A. (2019). A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdisciplinary Journal of Information, Knowledge, and Management, 14, 045-076. https://doi.org/10.28945/4184
  • Bühlmann, P. (2012). Bagging, Boosting and Ensemble Methods. Içinde J. E. Gentle, W. K. Härdle, & Y. Mori (Ed.), Handbook of Computational Statistics (ss. 985-1022). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-21551-3_33
  • Čeh, M., Kilibarda, M., Lisec, A., & Bajat, B. (2018). Estimating the Performance of Random Forest versus Multiple Regression for Predicting Prices of the Apartments. ISPRS International Journal of Geo-Information, 7(5), 168. https://doi.org/10.3390/ ijgi7050168
  • Chawla, A. (2023). A Visual and Overly Simplified Guide To Bagging and Boosting. https://blog.dailydoseofds.com/p/a-visual-and-overly-simplified-guide-4b1 Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System.
  • Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 785-794. https://doi.org/10.1145/2939672.2939785 Coğrafi İstatistik Portalı. (2025). Coğrafi İstatistik Portalı. https://cip.tuik.gov.tr/
  • Çılgın, C., Gökçen, H., & Gazi University, Ankara (Turkiye). (2023). Machine learning methods for prediction real estate sales prices in Turkey. Revista de La Construcción, 22(1), 163-177. https://doi.org/10.7764/RDLC.22.1.163
  • Dimopoulos, T., & Bakas, N. (2019). Sensitivity Analysis of Machine Learning Models for the Mass Appraisal of Real Estate. Case Study of Residential Units in Nicosia, Cyprus. Remote Sensing, 11(24), 3047. https://doi.org/10.3390/rs11243047
  • Freund, Y., & Schapire, R. E. (1996). Experiments with a New Boosting Algorithm. Gabrielli, L., & French, N. (2021). Pricing to market: Property valuation methods – a practical review. Journal of Property Investment & Finance, 39(5), 464-480. https:// doi.org/10.1108/JPIF-09-2020-0101
  • Gao, Q., Shi, V., Pettit, C., & Han, H. (2022). Property Valuation Using Machine Learning Algorithms On Statistical Areas In Greater Sydney, Australia. Land Use Policy, 123, 106409. https://doi.org/10.1016/j.landusepol.2022.106409
  • Guliker, E., Folmer, E., & Van Sinderen, M. (2022). Spatial Determinants of Real Estate Appraisals in The Netherlands: A Machine Learning Approach. ISPRS International Journal of Geo-Information, 11(2), 125. https://doi.org/10.3390/ijgi11020125
  • Hjort, A., Scheel, I., Sommervoll, D. E., & Pensar, J. (2024). Locally interpretable tree boosting: An application to house price prediction. Decision Support Systems, 178, 114106. https://doi.org/10.1016/j.dss.2023.114106
  • IAAO. (2018). Standard on Mass Appraisal of Real Property [Standart]. IAAO. https:// www.iaao.org/industry-data/iaao-technical-standards/
  • İban, M. C. (2021). Taşınmaz Mal Değeri Kestiriminde Topluluk Algoritmalarının Doğruluk Analizi. 47.
  • Ja’afar, N. S., Mohamad, J., & Ismail, S. (2021). Machine Learning For Property Price Prediction And Price Valuation: A Systematic Literature Review. Planning Malasia, 19. https://doi.org/10.21837/pm.v19i17.1018
  • Krämer, B., Stang, M., Doskoč, V., Schäfers, W., & Friedrich, T. (2023). Automated valuation models: Improving model performance by choosing the optimal spatial training level. Journal of Property Research, 40(4), 365-390. https://doi.org/10.1080 /09599916.2023.2206823
  • Lin, W., Shi, Z., Wang, Y., & Yan, T. H. (2023). Unfolding Beijing in a Hedonic Way. Computational Economics, 61(1), 317-340. https://doi.org/10.1007/s10614-021-10209-3 Lundberg, S. M., Erion, G., & Chen, H. (2019). Explainable AI for Trees: From Local Explanations to Global Understanding (No. arXiv:1905.04610). arXiv. https://doi. org/10.48550/arXiv.1905.04610
  • Michae Dellstad. (2018). Comparing three machine learning algorithms in the task of appraising commercial real estate (Tez). KTH Royal Institute Of Technology School Of Electrical Engineering And Computer Science.
  • Numan, J. A. A., & Yusoff, I. M. (2024). Identifying the Current Status of Real Estate Appraisal Methods. Real Estate Management and Valuation, 32(4), 12-27. https:// doi.org/10.2478/remav-2024-0032
  • Peng, Z., Huang, Q., & Han, Y. (2019). Model Research on Forecast of Second-Hand House Price in Chengdu Based on XGboost Algorithm. 2019 IEEE 11th International Conference on Advanced Infocomm Technology (ICAIT), 168-172. https://doi. org/10.1109/icait.2019.8935894
  • Perçem, E. (2025). Proptech Odaklı Toplu Değerleme: TUCBS Verilerine Dayalı Yapay Zekâ ve Coğrafi Bilgi Sistemleri Perspektifi (Coğrafi Bilgi Sistemi Uzmanlık Tezi).
  • Plevris, V., Solorzano, G., Bakas, N., & Ben Seghier, M. (2022). Investigation of performance metrics in regression analysis and machine learning-based prediction models. 8th European Congress on Computational Methods in Applied Sciences and Engineering. 8th European Congress on Computational Methods in Applied Sciences and Engineering. https://doi.org/10.23967/eccomas.2022.155
  • Rampini, L., & Re Cecconi, F. (2022). Artificial intelligence algorithms to predict Italian real estate market prices. Journal of Property Investment & Finance, 40(6), 588-611. https://doi.org/10.1108/JPIF-08-2021-0073
  • Renigier-Biłozor, M., Źróbek, S., Walacik, M., Borst, R., Grover, R., & d’Amato, M. (2022). International acceptance of automated modern tools use must-have for sustainable real estate market development. Land Use Policy, 113, 105876. https:// doi.org/10.1016/j.landusepol.2021.105876
  • Rolli, C. S. (2020). Zillow Home value Prediction Using XGBOOST. 47.
  • Stang, M. (2023). Real Estate Valuation in the Age of Artificial Intelligence – Modern Machine Learning Algorithms and their Application in Property Appraisal [Tez]. Submitted to the Faculty of Business, Economics, and Management Information Systems at the University of Regensburg.
  • Steurer, M., Hill, R. J., & Pfeifer, N. (2021). Metrics for evaluating the performance of machine learning based automated valuation models. Journal of Property Research, 38(2), 99-129. https://doi.org/10.1080/09599916.2020.1858937
  • TDUB. (2025). Değerleme Sektörü 2025 Yılı 1. Çeyrek Raporu (Analiz Raporu). MKK Gayrimenkul Bilgi Merkezi A.Ş. https://tdub.org.tr/sayfa/degerleme-sektoru-ozet-verileri Torres-Pruñonosa, J., García-Estévez, P., & Prado-Román, C. (2021). Artificial Neural Network, Quantile and Semi-Log Regression Modelling of Mass Appraisal in Housing. Mathematics, 9(7), 783. https://doi.org/10.3390/math9070783
  • Vargason, D. (2019). Data Mining Techniques for Predicting Real Estate Trends.
  • Wang, D., & Li, V. J. (2019). Mass Appraisal Models of Real Estate in the 21st Century: A Systematic Literature Review. Sustainability, 11(24), 7006. https://doi.org/10.3390/ su11247006
  • Xu, X., & Zhang, Y. (2021). House price forecasting with neural networks. Intelligent Systems with Applications, 12, 200052. https://doi.org/10.1016/j.iswa.2021.200052
  • Yagmur, A. (2025). Real Estate Valuation Decision-Making System Using Machine Learning and Geospatial Data.
  • Yang, H., Qiu, R., & Chen, W. (Ed.). (2020). Smart Service Systems, Operations Management, and Analytics: Proceedings of the 2019 INFORMS International Conference on Service Science. Springer International Publishing. https://doi. org/10.1007/978-3-030-30967-1
  • Yoshida, T., Murakami, D., & Seya, H. (2022). Spatial Prediction of Apartment Rent using Regression-Based and Machine Learning-Based Approaches with a Large Dataset. The Journal of Real Estate Finance and Economics, 69(1), 1-28. https://doi. org/10.1007/s11146-022-09929-6
  • Zhang, H., Li, Y., & Branco, P. (2024). Describe the house and I will tell you the price: House price prediction with textual description data. Natural Language Engineering, 30(4), 661-695. https://doi.org/10.1017/s1351324923000360
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Şehir ve Bölge Planlama, Kent ve Bölge Planlama (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Emel Perçem 0009-0006-6115-7409

Akın Kısa 0000-0002-7856-8988

Gönderilme Tarihi 1 Aralık 2025
Kabul Tarihi 29 Aralık 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Sayı: 8

Kaynak Göster

APA Perçem, E., & Kısa, A. (2025). TUCBS Verileriyle Coğrafi Bilgi Sistemleri ve Açıklanabilir Yapay Zekâ Tabanlı Toplu Değerleme. Çevre Şehir ve İklim Dergisi(8), 40-70.