İnceleme Makalesi
BibTex RIS Kaynak Göster

YAŞAMIN KAYNAĞI NEFES: HAVA KALİTESİ YÖNETİMİNDE DİJİTALLEŞME

Yıl 2024, Cilt: 1 Sayı: Özel, 13 - 31, 02.12.2024

Öz

Yaşamın temel kaynağı nefesin kalitesi sağlığımız için çok önemlidir. Bu nedenle hava kalitesi yönetimi en temel çevre politikalarının arasında yer almaktadır. Sınır tanımayan, taşınan ve dinamik yapısı nedeniyle hava kalitesi yönetiminde küresel işbirliklerine ihtiyaç duyulmaktadır. Ülkemiz, bu itibarla geliştirilen BM Uzun Menzilli Sınıraşan Hava Kirliliği (LRTAP) Sözleşmesi ilk imzacı ülkeleri arasında yer almıştır.
Ulusal düzeyde hava, Çevre Kanununa dayanılarak mevzuat düzenlenen ilk çevre teması olmuştur. Hava kalitesinin iyileştirilmesi bağlamında geliştirilen mevzuatın yanı sıra, “Bilmediğinizi yönetemezsiniz” yaklaşımı ile şeffaf ve ortak bir veri tabanı olarak Hava Emisyon Yönetim portalı geliştirilmiş, tüm hava kirleticilerinin zamansal ve mekânsal dağılımları ile hava kalitesi modellerinin Çevre, Şehircilik ve İklim Değişikliği Bakanlığı sunucularında çalışarak kilometre çözünürlüğünde hava kalitesi haritaları üretilmektedir. Oluşturulan senaryolar ile hava kalitesini iyileştirmede en etkin olanlar belirlenerek politika haline gelmektedir.
Diğer yandan kısa ömürlü hava kirleticilerinin şehirlerde yüksek çözünürlüklü kaynaklarının tespiti ve yönetimi, kirlilikle mücadeleyi daha etkin kılmaktadır. Çevre, Şehircilik ve İklim Değişikliği Bakanlığınca geliştirilen NEFES (New Emission Forecast&Evaluation System) yazılımı ile şehirlerin dijital ikizleri üzerinde metre hassasiyetinde hava kalitesi değerleri ve kirletici kaynakları tespit edebilmektedir. 81 ilimizin merkez ve tüm ilçeleri için tamamlanan çalışmalar ile emisyon azaltım politikaları belirlenmekte ve yol haritaları hazırlanmaktadır.
Hava kalitesinin etkin yönetimi için atılan adımlar küresel sorun iklim değişikliği ile mücadelemize önemli katkılar sağlayacaktır.

Kaynakça

  • WHO, 2018. Ambient air pollution: health impacts. Retrieved May 10, (2020), from. htt ps://www.who.int/airpollution/ambient/health-impacts/en/.
  • Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., et al., (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 389, 1907–1918. https:// doi.org/10.1016/S0140-6736(17)30505-6.
  • Ebrahimi, H., Aryan, Z., Saeedi Moghaddam, S., Bisignano, C., Rezaei, S., Pishgar, F., Force, L.M., Abolhassani, H., Abu-Gharbieh, E., Advani, S.M., Ahmad, S., Alahdab, F., Alipour, V., Aljunid, S.M., Amini, S., et al., (2021). Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Respir. Med. 9, 1030–1049. https://doi.org/10.1016/S2213-2600(21)00164-8.
  • https://www.ohchr.org/en/press-releases/2019/03/air-pollution-silent-killer-claims- 7-million-lives-each-year
  • CCAC SNAP, Guidance for national planning to reduce short-lived climate pollutants. Climate and Clean Air Coalition Supporting National Action & Planning on Short- Lived Climate Pollutant Mitigation Initiative report. 〈https://www. ccacoalition.org/ resources/guidance-document-national-planning-reducing-shortlived-climatepollutants- snap〉, (2018)
  • T. Arfin, A.M. Pillai, N. Mathew, et al., Environ. Sci. Pollut. Res. 30 (2023). 125347– 125369, https://doi.org/10.1007/s11356-023-29652-w.
  • E. Tagaris, et al.The potential impact of climate change on air pollution-related human health effects Environmental Science & Technology, 43 (13) (2009), pp. 4979-4988. Great Smog of London YR Rodriguez, Arizona Department of Environmental Quality, Phoenix, AZ, USA 2014 Elsevier.
  • Hordijk, L., (1991). Use of the RAINS model in acid rain negotiations in Europe. Environmental Science & Technology 25, 596–603.
  • Gough, C., Castells, N., Funtowicz, S., (1998). Integrated assessment: an emerging methodology for complex issues. Environmental Modelling and Assessment 3, 19–29.
  • Tuinstra, W., Hordijk, L., Amann, M., (1999). Using computer models in international negotiations/the case of acidification in Europe. Environment 41, 33–42.
  • Castells, N., Ravetz, J., (2001). Science and policy in international environmental agreements: lessons from the European experience on transboundary air pollution. International Environmental Agreements: Politics, Law and Economics 1, 405–425.
  • Eckley, N., (2001). Designing effective assessments: the role of participation, science and governance, and focus. Environmental Issue Report 26, EEA Copenhagen.
  • Sundqvist, G., Letell, M., Lidskog, R., (2002). Science and policy in air pollution abatement strategies. Environmental Science & Policy 5, 147–156.
  • Lidskog, R., Sundqvist, G., (2004). From consensus to credibility: policy relevant science in late modernity, innovation: the European. Journal of Social Science Research 17, 205–226.
  • Farrell, A.E., VanDeveer, S.D., Jager, J., (2001). Environmental assessments: four underappreciated elements of design. Global Environmental Change 11, 311–333.
  • Grünfeld, H., (1999). Creating Favourable Conditions for International Environmental Change Through Knowledge and Negotiation. Lessons from the Rhine Action Program and the Second Sulphur Protocol, Implications for Climate Change. Delft University Press, The Netherlands.
  • Backstrand, K., (2001). What can nature withstand? Science, politics and discourses in transboundary air pollution diplomacy. Lund Political Studies 116, Department of Political Science, Lund University.
  • Farrell, A.E., Keating, T.J., (2005). Dissent and trust in multilateral assessments’. In: Farrell, A.E., Ja¨ger, J. (Eds.), Assessments of Regional and Global Environmental Risks: Designing Processes for the Effective Use of Science in Decision Making. RFF Press, Washington, DC.
  • VanDeveer, S., (2005). European politics with a scientific face. Framing, asymmetrical participation, and capacity in LRTAP. In: Farrell, A.E., Ja¨ger, J. (Eds.), Assessments of Regional and Global Environmental Risks: Designing Processes for the Effective Use of Science in Decision making. RFF Press, Washington, DC
  • Tuinstara, W. (2006). Moving boundaries in transboundary air pollution coproduction of science and policy under the convention on long range transboundary air pollution Global Environmental Change 16 349–363.
  • Gürtepe, İ.Ç., Köksal, C.E. (2014). Ulusal hava kirleticileri emisyon envanteri. Hava Kirliliği Araştırmaları Dergisi, 3: 22-28.
  • H. Özdemir, İ. Gürtepe. (2021). Noktasal Kaynaklar İçin Ulusal Hava Kirliliği Emisyon Faktörleri ve Envanterinin Belirlenmesi: Metal Sektörü İçin Örnek Bir Çalışma, Adv. Eng. Pure Sci. 33(3): 337-346 https://doi.org/10.7240/jeps.537152
  • Zhang, A., (2022). Sustainable Cities and Society 78. 103649 Exploring the effects of 3D urban form on urban air quality: Evidence from fifteen megacities in China UNEP Integrated Assesment of Black Carbon and Troposheric Ozone İstanbul Teknik Üniversitesi-Hava Emisyon Yönetim Portalının Geliştirilmesi Proje Sonuç Raporu, 2021
  • TÜRKSAT- 3 Boyutlu Ortamda Hava Kalitesinin Tespiti Projesi Sonuç Raporu, 2021
  • Zhang, J. (2024). Building and Environment 248. 111032, Comparing multiple machine learning models to investigate the relationship between urban morphology and PM2.5 based on mobile monitoring,
  • Huang, C. (2022). Building and Environment 219. 109173 Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning.
  • NEFES, 2021 https://www.aa.com.tr/tr/gundem/hava-kirliliginin-seviyesi-25-ildeyerli- ve-milli-3-boyutlu-yazilim-nefesle-olculuyor/2447822
  • Harris, M. J. (2005). Fast fluid dynamics simulation on the GPU. SIGGRAPH Courses, 220(10.1145), 1198555-1198790.
  • IIR, (2021). https://webdosya.csb.gov.tr/db/cygm/menu/turkey-s-irr-2021_ tr_20211101034946.pdf

BREATHE; THE SOURCE OF LIFE “DIGITILAZITION IN AIR QUALITY MANAGEMENT”

Yıl 2024, Cilt: 1 Sayı: Özel, 13 - 31, 02.12.2024

Öz

Kaynakça

  • WHO, 2018. Ambient air pollution: health impacts. Retrieved May 10, (2020), from. htt ps://www.who.int/airpollution/ambient/health-impacts/en/.
  • Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, A., Kan, H., et al., (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 389, 1907–1918. https:// doi.org/10.1016/S0140-6736(17)30505-6.
  • Ebrahimi, H., Aryan, Z., Saeedi Moghaddam, S., Bisignano, C., Rezaei, S., Pishgar, F., Force, L.M., Abolhassani, H., Abu-Gharbieh, E., Advani, S.M., Ahmad, S., Alahdab, F., Alipour, V., Aljunid, S.M., Amini, S., et al., (2021). Global, regional, and national burden of respiratory tract cancers and associated risk factors from 1990 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Respir. Med. 9, 1030–1049. https://doi.org/10.1016/S2213-2600(21)00164-8.
  • https://www.ohchr.org/en/press-releases/2019/03/air-pollution-silent-killer-claims- 7-million-lives-each-year
  • CCAC SNAP, Guidance for national planning to reduce short-lived climate pollutants. Climate and Clean Air Coalition Supporting National Action & Planning on Short- Lived Climate Pollutant Mitigation Initiative report. 〈https://www. ccacoalition.org/ resources/guidance-document-national-planning-reducing-shortlived-climatepollutants- snap〉, (2018)
  • T. Arfin, A.M. Pillai, N. Mathew, et al., Environ. Sci. Pollut. Res. 30 (2023). 125347– 125369, https://doi.org/10.1007/s11356-023-29652-w.
  • E. Tagaris, et al.The potential impact of climate change on air pollution-related human health effects Environmental Science & Technology, 43 (13) (2009), pp. 4979-4988. Great Smog of London YR Rodriguez, Arizona Department of Environmental Quality, Phoenix, AZ, USA 2014 Elsevier.
  • Hordijk, L., (1991). Use of the RAINS model in acid rain negotiations in Europe. Environmental Science & Technology 25, 596–603.
  • Gough, C., Castells, N., Funtowicz, S., (1998). Integrated assessment: an emerging methodology for complex issues. Environmental Modelling and Assessment 3, 19–29.
  • Tuinstra, W., Hordijk, L., Amann, M., (1999). Using computer models in international negotiations/the case of acidification in Europe. Environment 41, 33–42.
  • Castells, N., Ravetz, J., (2001). Science and policy in international environmental agreements: lessons from the European experience on transboundary air pollution. International Environmental Agreements: Politics, Law and Economics 1, 405–425.
  • Eckley, N., (2001). Designing effective assessments: the role of participation, science and governance, and focus. Environmental Issue Report 26, EEA Copenhagen.
  • Sundqvist, G., Letell, M., Lidskog, R., (2002). Science and policy in air pollution abatement strategies. Environmental Science & Policy 5, 147–156.
  • Lidskog, R., Sundqvist, G., (2004). From consensus to credibility: policy relevant science in late modernity, innovation: the European. Journal of Social Science Research 17, 205–226.
  • Farrell, A.E., VanDeveer, S.D., Jager, J., (2001). Environmental assessments: four underappreciated elements of design. Global Environmental Change 11, 311–333.
  • Grünfeld, H., (1999). Creating Favourable Conditions for International Environmental Change Through Knowledge and Negotiation. Lessons from the Rhine Action Program and the Second Sulphur Protocol, Implications for Climate Change. Delft University Press, The Netherlands.
  • Backstrand, K., (2001). What can nature withstand? Science, politics and discourses in transboundary air pollution diplomacy. Lund Political Studies 116, Department of Political Science, Lund University.
  • Farrell, A.E., Keating, T.J., (2005). Dissent and trust in multilateral assessments’. In: Farrell, A.E., Ja¨ger, J. (Eds.), Assessments of Regional and Global Environmental Risks: Designing Processes for the Effective Use of Science in Decision Making. RFF Press, Washington, DC.
  • VanDeveer, S., (2005). European politics with a scientific face. Framing, asymmetrical participation, and capacity in LRTAP. In: Farrell, A.E., Ja¨ger, J. (Eds.), Assessments of Regional and Global Environmental Risks: Designing Processes for the Effective Use of Science in Decision making. RFF Press, Washington, DC
  • Tuinstara, W. (2006). Moving boundaries in transboundary air pollution coproduction of science and policy under the convention on long range transboundary air pollution Global Environmental Change 16 349–363.
  • Gürtepe, İ.Ç., Köksal, C.E. (2014). Ulusal hava kirleticileri emisyon envanteri. Hava Kirliliği Araştırmaları Dergisi, 3: 22-28.
  • H. Özdemir, İ. Gürtepe. (2021). Noktasal Kaynaklar İçin Ulusal Hava Kirliliği Emisyon Faktörleri ve Envanterinin Belirlenmesi: Metal Sektörü İçin Örnek Bir Çalışma, Adv. Eng. Pure Sci. 33(3): 337-346 https://doi.org/10.7240/jeps.537152
  • Zhang, A., (2022). Sustainable Cities and Society 78. 103649 Exploring the effects of 3D urban form on urban air quality: Evidence from fifteen megacities in China UNEP Integrated Assesment of Black Carbon and Troposheric Ozone İstanbul Teknik Üniversitesi-Hava Emisyon Yönetim Portalının Geliştirilmesi Proje Sonuç Raporu, 2021
  • TÜRKSAT- 3 Boyutlu Ortamda Hava Kalitesinin Tespiti Projesi Sonuç Raporu, 2021
  • Zhang, J. (2024). Building and Environment 248. 111032, Comparing multiple machine learning models to investigate the relationship between urban morphology and PM2.5 based on mobile monitoring,
  • Huang, C. (2022). Building and Environment 219. 109173 Effect of urban morphology on air pollution distribution in high-density urban blocks based on mobile monitoring and machine learning.
  • NEFES, 2021 https://www.aa.com.tr/tr/gundem/hava-kirliliginin-seviyesi-25-ildeyerli- ve-milli-3-boyutlu-yazilim-nefesle-olculuyor/2447822
  • Harris, M. J. (2005). Fast fluid dynamics simulation on the GPU. SIGGRAPH Courses, 220(10.1145), 1198555-1198790.
  • IIR, (2021). https://webdosya.csb.gov.tr/db/cygm/menu/turkey-s-irr-2021_ tr_20211101034946.pdf
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çevre Yönetimi (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

İrde Çetintürk Gürtepe 0000-0002-8484-9858

Yayımlanma Tarihi 2 Aralık 2024
Gönderilme Tarihi 2 Eylül 2024
Kabul Tarihi 28 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 1 Sayı: Özel

Kaynak Göster

APA Çetintürk Gürtepe, İ. (2024). YAŞAMIN KAYNAĞI NEFES: HAVA KALİTESİ YÖNETİMİNDE DİJİTALLEŞME. Çevre Şehir Ve İklim Dergisi, 1(Özel), 13-31.