Araştırma Makalesi
BibTex RIS Kaynak Göster

Naftokinon-Urazol Melezlerinin Antioksidan Etki Mekanizmaları Üzerine DFT Çalışması

Yıl 2018, Cilt: 39 Sayı: 3, 734 - 744, 30.09.2018
https://doi.org/10.17776/csj.454294

Öz

Bu çalışmanın amacı, naftokinon-urazol melezlerinin antioksidan
aktivitelerinin teorik ve deneysel sonuçlar karşılaştırarak değerlendirilmesi
ve antioksidan etki mekanizmalarının araştırılmasıdır. Bu amaçla, incelenen
naftokinon-urazol melezleri ve iyonik formları için kuantum kimyasal
hesaplamalar B3LYP / 6-311 ++ G (d, p) düzeyinde hem gaz hem de su fazında
yapılmıştır. Antioksidan aktiviteleri üzerine suyun çözücü etkisi, aynı
hesaplama düzeyinde C-PCM yöntemi kullanılarak araştırıldı. Naftokinon-urazol
melezleri için antioksidan etki mekanizmaları, bazı fizikokimyasal parametreler
kullanılarak termodinamik olarak değerlendirildi.

Kaynakça

  • [1]. Mokini Z., Marcovecchio, M. L., & Chiarelli, F., Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways, Diabetes Research and Clinical Practice, 87-3 (2010) 313-321.
  • [2]. Kamkar, A., Javan, A. J., Asadi, F., & Kamalinejad, M., The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil, Food and Chemical Toxicology, 48-7 (2010) 1796-1800.
  • [3]. Kovacic, P., & Somanathan, R., Recent developments in the mechanism of anticancer agents based on electron transfer, reactive oxygen species and oxidative stress. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 11-7 (2011) 658-668.
  • [4]. Salustiano, E. J., Netto, C. D., Fernandes, R. F., da Silva, A. J., Bacelar, T. S., Castro, C. P., .. & Costa, P. R., Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1, 4-naphthoquinones on human leukemic cells, Investigational new drugs, 28-2 (2011) 139-144.
  • [5]. Gaikwad, P., Barik, A., Priyadarsini, K. I., & Rao, B. S. M., Antioxidant activities of phenols in different solvents using DPPH assay, Research on chemical intermediates, 36-9 (2011) 1065-1072.
  • [6]. Kuwahara, R., Hatate, H., Yuki, T., Murata, H., Tanaka, R., & Hama, Y., Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina, LWT-Food Science and Technology, 42-7 (2009) 1296-1300.
  • [7]. Jacobson, C. R., A. D. Adamo, and C. E. Cosgrove. "US Patent, 3,663,564, 1972." Chem. Abstr. Vol. 76. 1972.
  • [8]. Wellington, K. W., Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5-26 (2015) 20309-20338.
  • [9]. T. Jikihara, K. Matsuya, H. Ohta, S. Suzuki and O. Wakabayashi, US Pat. 4249934 A, 1981, Chem. Abstr., 95 (1981) 62219 y.
  • [10]. R. A. Izydore and I. H. Hall, US Pat. 4866058, 1990, Chem. Abstr.,112 (1990) 151876 x.
  • [11]. B. V. Bredow and H. Brechbuehler, Ger. Offen. 2343347 A1, Chem. Abstr., 80 (1974) 140210 s.
  • [12]. Saluja, P., Khurana, J. M., Nikhil, K., & Roy, P., Task-specific ionic liquid catalyzed synthesis of novel naphthoquinone–urazole hybrids and evaluation of their antioxidant and in vitro anticancer activity. RSC Advances, 4.65 (2014) 34594-34603.
  • [13]. Wright, J. S., Johnson, E. R., & DiLabio, G. A., Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123-6 (2001) 1173-1183.
  • [14]. Bartmess, J. E., Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98-25 (1994) 6420-6424.
  • [15]. Klein, E., Rimarcik, J., & Lukes, V., DFT/B3LYP study of the O–H bond dissociation enthalpies and proton affinities of para-and meta-substituted phenols in water and benzene, Acta Chim. Slovaca, 2-2 (2009) 37-51.
  • [16]. Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M., Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, Journal of Molecular Structure: THEOCHEM, 952(1-3) (2010) 25-30.
  • [17]. Parker, V. D., Homolytic bond (HA) dissociation free energies in solution. Applications of the standard potential of the (H+/H. bul.) couple, Journal of the American Chemical Society, 114-19 (1992) 7458-7462.
  • [18]. Bizarro, M. M., Cabral, B. J. C., de Santos, R. M. B., & Simões, J. A. M., Substituent effects on the OH bond dissociation enthalpies in phenolic compounds: agreements and controversies, Pure and Applied Chemistry, 71-8 (1999) 1609-1610.
  • [19]. M.A. Robb, J.R. Cheeseman, M.J. Frisch, G.W. Trucks,H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji,M. Caricato, X. Li,H.p.Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.Montgomery, Jr., J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,J.C. Burant, S.S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J.M. Millam, M.Klene, J.E. Knox, J.B. Cross,V. Bakken, C. Adamo, J.Jaramillo, R. Gompert, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V.Ortiz, J. Cioslowski, andD.J. Fox, Gaussian 09, Revision C.01 (Gaussian Inc.,Wallingford,CT, (2010).
  • [20]. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98-7 (1993) 5648-5652.
  • [21]. Cances, E., Mennucci, B., & Tomasi, J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics, 107-8 (1997) 3032-3041.
  • [22]. Özbakır Işın, D., Theoretical study on the investigation of antioxidant properties of some hydroxyanthraquinones, Molecular Physics, 114-24 (2016) 3578-3588.
  • [23]. Kabanda, M. M., Tran, V. T., Seema, K. M., Serobatse, K. R., Tsiepe, T. J., Tran, Q. T., & Ebenso, E. E., Conformational, electronic and antioxidant properties of lucidone, linderone and methyllinderone: DFT, QTAIM and NBO studies, Molecular Physics, 113-7 (1015) 683-697.
  • [24]. Cai, W., Chen, Y., Xie, L., Zhang, H., & Hou, C., Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, European Food Research and Technology, 238-1 (2014) 121-128.
  • [25]. Markovic, Zoran S., Slavko V. Mentus, and Jasmina M. Dimitrić Marković., Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity, The journal of physical chemistry A 113-51 (2009) 14170-14179.
  • [26]. Leopoldini, M., Russo, N., & Toscano, M., Gas and liquid phase acidity of natural antioxidants, Journal of agricultural and food chemistry, 54-8 (2006) 3078-3085.
  • [27]. Marković, Z., Jeremić, S., Marković, J. D., Pirković, M. S., & Amić, D., Influence of structural characteristics of substituents on the antioxidant activity of some anthraquinone derivatives, Computational and Theoretical Chemistry, 1077 (2016) 25-31.

DFT Study on Antioxidant Action Mechanisms of Naphthoquinone-Urazole Hybrids

Yıl 2018, Cilt: 39 Sayı: 3, 734 - 744, 30.09.2018
https://doi.org/10.17776/csj.454294

Öz

The aim of this study is on the evaluation of
the antioxidant activities of the investigated naphthoquinone-urazole hybrids
by comparing our theoretical results with experimental results and on the
elucidation the antioxidant action mechanisms. For this purpose, quantum
chemical calculations were performed at the B3LYP/6-311++G(d,p) level for the
investigated naphthoquinone-urazole hybrids and their ionic forms in the gas
phase and in water.
The solvation effect of water on the antioxidant
activity was examined using the
conductor–like
polarizable continuum model (
C-PCM) at the same level of
theory. T
he antioxidant action mechanisms for the
investigated
naphthoquinone-urazole hybrids were assessed
thermodynamically by several physicochemical parameters.

Kaynakça

  • [1]. Mokini Z., Marcovecchio, M. L., & Chiarelli, F., Molecular pathology of oxidative stress in diabetic angiopathy: role of mitochondrial and cellular pathways, Diabetes Research and Clinical Practice, 87-3 (2010) 313-321.
  • [2]. Kamkar, A., Javan, A. J., Asadi, F., & Kamalinejad, M., The antioxidative effect of Iranian Mentha pulegium extracts and essential oil in sunflower oil, Food and Chemical Toxicology, 48-7 (2010) 1796-1800.
  • [3]. Kovacic, P., & Somanathan, R., Recent developments in the mechanism of anticancer agents based on electron transfer, reactive oxygen species and oxidative stress. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents), 11-7 (2011) 658-668.
  • [4]. Salustiano, E. J., Netto, C. D., Fernandes, R. F., da Silva, A. J., Bacelar, T. S., Castro, C. P., .. & Costa, P. R., Comparison of the cytotoxic effect of lapachol, α-lapachone and pentacyclic 1, 4-naphthoquinones on human leukemic cells, Investigational new drugs, 28-2 (2011) 139-144.
  • [5]. Gaikwad, P., Barik, A., Priyadarsini, K. I., & Rao, B. S. M., Antioxidant activities of phenols in different solvents using DPPH assay, Research on chemical intermediates, 36-9 (2011) 1065-1072.
  • [6]. Kuwahara, R., Hatate, H., Yuki, T., Murata, H., Tanaka, R., & Hama, Y., Antioxidant property of polyhydroxylated naphthoquinone pigments from shells of purple sea urchin Anthocidaris crassispina, LWT-Food Science and Technology, 42-7 (2009) 1296-1300.
  • [7]. Jacobson, C. R., A. D. Adamo, and C. E. Cosgrove. "US Patent, 3,663,564, 1972." Chem. Abstr. Vol. 76. 1972.
  • [8]. Wellington, K. W., Understanding cancer and the anticancer activities of naphthoquinones–a review. RSC Advances, 5-26 (2015) 20309-20338.
  • [9]. T. Jikihara, K. Matsuya, H. Ohta, S. Suzuki and O. Wakabayashi, US Pat. 4249934 A, 1981, Chem. Abstr., 95 (1981) 62219 y.
  • [10]. R. A. Izydore and I. H. Hall, US Pat. 4866058, 1990, Chem. Abstr.,112 (1990) 151876 x.
  • [11]. B. V. Bredow and H. Brechbuehler, Ger. Offen. 2343347 A1, Chem. Abstr., 80 (1974) 140210 s.
  • [12]. Saluja, P., Khurana, J. M., Nikhil, K., & Roy, P., Task-specific ionic liquid catalyzed synthesis of novel naphthoquinone–urazole hybrids and evaluation of their antioxidant and in vitro anticancer activity. RSC Advances, 4.65 (2014) 34594-34603.
  • [13]. Wright, J. S., Johnson, E. R., & DiLabio, G. A., Predicting the activity of phenolic antioxidants: theoretical method, analysis of substituent effects, and application to major families of antioxidants. Journal of the American Chemical Society, 123-6 (2001) 1173-1183.
  • [14]. Bartmess, J. E., Thermodynamics of the electron and the proton. The Journal of Physical Chemistry, 98-25 (1994) 6420-6424.
  • [15]. Klein, E., Rimarcik, J., & Lukes, V., DFT/B3LYP study of the O–H bond dissociation enthalpies and proton affinities of para-and meta-substituted phenols in water and benzene, Acta Chim. Slovaca, 2-2 (2009) 37-51.
  • [16]. Rimarčík, J., Lukeš, V., Klein, E., & Ilčin, M., Study of the solvent effect on the enthalpies of homolytic and heterolytic N–H bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamine, Journal of Molecular Structure: THEOCHEM, 952(1-3) (2010) 25-30.
  • [17]. Parker, V. D., Homolytic bond (HA) dissociation free energies in solution. Applications of the standard potential of the (H+/H. bul.) couple, Journal of the American Chemical Society, 114-19 (1992) 7458-7462.
  • [18]. Bizarro, M. M., Cabral, B. J. C., de Santos, R. M. B., & Simões, J. A. M., Substituent effects on the OH bond dissociation enthalpies in phenolic compounds: agreements and controversies, Pure and Applied Chemistry, 71-8 (1999) 1609-1610.
  • [19]. M.A. Robb, J.R. Cheeseman, M.J. Frisch, G.W. Trucks,H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji,M. Caricato, X. Li,H.p.Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A.Montgomery, Jr., J.E. Peralta, F. Ogliaro,M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,J.C. Burant, S.S. Iyengar, J.Tomasi, M. Cossi, N. Rega, J.M. Millam, M.Klene, J.E. Knox, J.B. Cross,V. Bakken, C. Adamo, J.Jaramillo, R. Gompert, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W.Ochterski, R.L. Martin,K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V.Ortiz, J. Cioslowski, andD.J. Fox, Gaussian 09, Revision C.01 (Gaussian Inc.,Wallingford,CT, (2010).
  • [20]. Becke, A. D., Density‐functional thermochemistry. III. The role of exact exchange, The Journal of chemical physics, 98-7 (1993) 5648-5652.
  • [21]. Cances, E., Mennucci, B., & Tomasi, J., A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal of chemical physics, 107-8 (1997) 3032-3041.
  • [22]. Özbakır Işın, D., Theoretical study on the investigation of antioxidant properties of some hydroxyanthraquinones, Molecular Physics, 114-24 (2016) 3578-3588.
  • [23]. Kabanda, M. M., Tran, V. T., Seema, K. M., Serobatse, K. R., Tsiepe, T. J., Tran, Q. T., & Ebenso, E. E., Conformational, electronic and antioxidant properties of lucidone, linderone and methyllinderone: DFT, QTAIM and NBO studies, Molecular Physics, 113-7 (1015) 683-697.
  • [24]. Cai, W., Chen, Y., Xie, L., Zhang, H., & Hou, C., Characterization and density functional theory study of the antioxidant activity of quercetin and its sugar-containing analogues, European Food Research and Technology, 238-1 (2014) 121-128.
  • [25]. Markovic, Zoran S., Slavko V. Mentus, and Jasmina M. Dimitrić Marković., Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity, The journal of physical chemistry A 113-51 (2009) 14170-14179.
  • [26]. Leopoldini, M., Russo, N., & Toscano, M., Gas and liquid phase acidity of natural antioxidants, Journal of agricultural and food chemistry, 54-8 (2006) 3078-3085.
  • [27]. Marković, Z., Jeremić, S., Marković, J. D., Pirković, M. S., & Amić, D., Influence of structural characteristics of substituents on the antioxidant activity of some anthraquinone derivatives, Computational and Theoretical Chemistry, 1077 (2016) 25-31.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Natural Sciences
Yazarlar

Dilara Özbakır Işın

Yayımlanma Tarihi 30 Eylül 2018
Gönderilme Tarihi 17 Ağustos 2018
Kabul Tarihi 25 Eylül 2018
Yayımlandığı Sayı Yıl 2018Cilt: 39 Sayı: 3

Kaynak Göster

APA Özbakır Işın, D. (2018). DFT Study on Antioxidant Action Mechanisms of Naphthoquinone-Urazole Hybrids. Cumhuriyet Science Journal, 39(3), 734-744. https://doi.org/10.17776/csj.454294