Farklı Yükseklikli ve Kanatçıklı Birleşik Jet Akışlı Kanallarda Isı Transferi İyileştirilmesinin İncelenmesi
Yıl 2022,
Cilt: 1 Sayı: 1, 1 - 8, 31.12.2022
Dogan Engin Alnak
,
Koray Karabulut
Öz
Çarpan jet-çapraz akıştan oluşan birleşik jet etkisi ısınmış elektronik elemanlardan olan ısı transferini artırıcı bir etkiye sahiptir. Bu çalışmada, sabit 1000 W/m2 ısı akılı desenli yüzeylerden olan ısı transferi farklı yüksekli (H = 3D ve 4D), kanatçıksız ve 90o açılı kanatçıklı kanalda birleşik jet akışı ile sayısal olarak analiz edilmiştir. Sayısal çalışma, sürekli ve üç boyutlu olarak k-ε türbülans modelli Ansys-Fluent programının kullanılmasıyla gerçekleştirilmiştir. Literatürdeki çalışmalar da göz önüne alınarak kanal boyutlarına uygun olacak şekilde kanallara üçer adet desenli yüzey yerleştirilmiştir. Kanalda kullanılan akışkanların Re sayısı aralığı 7000-11000’ dir. Çalışmadan elde edilen sonuçların doğruluğu ve kabul edilebilirliği deneysel araştırmalar sonucu elde edilen eşitlik kullanılarak kanıtlanmıştır. Çalışmanın sonuçları, kanallardaki her bir desen için ortalama Nu sayısı ve yüzey sıcaklığının değişimleri olarak kanatçıksız ve kanatçıklı durumlarda karşılaştırmalı olarak incelenmiştir. Ayrıca, birleşik jet akışının hız ve sıcaklık konturu dağılımları jet-desen arası etkileşimler de göz önüne alınarak farklı kanal yükseklikleri için sunulmuştur. Re = 9000’ de kanatçıklı kanalda kanatçıksız kanala göre H = 3D ve her üç desenli yüzey için Num değeri %27,37 daha fazla iken H = 4D’ de bu artış değerinin %11,42 olduğu tespit edilmiştir.
Destekleyen Kurum
Sivas Cumhuriyet Üniversitesi Bilimsel Araştırmalar Proje Birimi (CÜBAP)
Proje Numarası
TEKNO-2021-031
Teşekkür
Bu çalışma, Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) birimi tarafından TEKNO-2021-031 proje numarası ile desteklenmiştir.
Kaynakça
- Alnak DE, Koca F, Alnak Y. A., 2021. Numerical investigation of heat transfer from heated surfaces of different shapes. Journal of Engineering Thermophysics, 30:494-507. doi.org/10.1134/S1810232821030127
- Demircan T. 2019. Numerical analysis of cooling an electronic circuit component with cross flow and jet combination. Journal of Mechanics, 35(3):395-404. doi.org/10.1017/jmech.2018.11
- Hadipour A, Zargarabadi MR. 2018. Heat transfer and flow characteristics of ımpinging jet on a concave surface at small nozzle to surface distances. Applied Thermal Engineering, 138:534-541. doi.org/10.1016/j.applthermaleng.2018.04.086
- Incropera FP, Dewit DP, Bergman TL, Lavine AS. 2007. Fundamentals of heat and mass transfer (Sixth Edition), John Wiley&Sons, Indiana, 447-487.
- Karabulut K, Alnak DE, 2021. Investigation of the Variation of Cooling Performance with the Channel Height in A Channel Having Impinging Jet-Cross Flow. Proceedings of ISPEC 12th International Conference on Engineering & Natural Sciences. 24-25 December, Bingöl, s. 273-290.
- Kılıç M. 2018. Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(3):121-132. doi.org/10.21605/cukurovaummfd.500597
- Ma CF, Bergles AE, 1983. Boiling jet impingement cooling of simulated microelectronic chips. Heat Transfer In Electronic Equipment HTD, 28:5-12.
- Maghrabie HM, Attalla M, Fawaz HE, Khalil M. 2017. Numerical investigation of heat transfer and pressure drop of in-line array of heated obstacles cooled by jet impingement in cross-flow. Alexandria Engineering Journal, 56:285-296. doi.org/10.1016/j.aej.2016.12.022
- Mergen S, 2014. Kanal İçi Akış ve Çarpan Jet ile Birlikte Elektronik Eleman Soğutulmasının Sayısal Olarak İncelenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
- Saleha N, Fadela N, Abbes A. 2015. Improving cooling effectiveness by use chamfers on the top of electronic components. Microelectronics Reliability, 55:1067-1076. doi.org/10.1016/j.microrel.2015.04.006
- Öztürk SM, Demircan T. 2022. Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1): 57-74. doi.org/10.17341/gazimmfd.799793
- Teamah MA, Dawood MM, Shehata A., 2015. Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate. Experimental Thermal and Fluid Science, 74:235-246. doi.org/10.1016/j.expthermflusci.2015.12.012
- Wang SJ, Mujumdar AS, 2005. A comparative study of five low Reynolds number k-ε models for impingement heat transfer. Applied Thermal Engineering, 25:31-44. doi.org/10.1016/j.applthermaleng.2004.06.001
Investigation of Heat Transfer Improvement in Combined Jet Flow Channels with Different Channel Height and Fin
Yıl 2022,
Cilt: 1 Sayı: 1, 1 - 8, 31.12.2022
Dogan Engin Alnak
,
Koray Karabulut
Öz
The combined jet effect, which consists of the impinging jet and the cross flow, has an effect of increasing the heat transfer from the heated electronic elements. In this study, heat transfer from surfaces with a fixed 1000 W/m2 heat flux pattern was numerically analyzed with a combined jet flow in a channel with different heights (H = 3D and 4D), without fin and 90o angled fin. The numerical study was carried out steady and in three dimensional by using the Ansys-Fluent program with k-ε turbulence model. Considering the studies in the literature, three patterned surfaces were placed on the channels in accordance with the channel dimensions. The Re number range of the fluids used in the channel is 7000-11000. The accuracy and acceptability of the results obtained from the study has been proven by using the equation obtained as a result of experimental research. The results of the study were examined comparatively in the finless and finned cases as the average Nu number and surface temperature changes for each pattern in the channels. In addition, the velocity and temperature contour distributions of the combined jet flow were presented for different channel heights, taking into account the interactions between the jet and the pattern. At Re = 9000, the Num value was 27.37% higher in H = 3D and for all three patterned surfaces compared to the finless channel in the finned channel, while this increase value was 11.42% in H = 4D.
Proje Numarası
TEKNO-2021-031
Kaynakça
- Alnak DE, Koca F, Alnak Y. A., 2021. Numerical investigation of heat transfer from heated surfaces of different shapes. Journal of Engineering Thermophysics, 30:494-507. doi.org/10.1134/S1810232821030127
- Demircan T. 2019. Numerical analysis of cooling an electronic circuit component with cross flow and jet combination. Journal of Mechanics, 35(3):395-404. doi.org/10.1017/jmech.2018.11
- Hadipour A, Zargarabadi MR. 2018. Heat transfer and flow characteristics of ımpinging jet on a concave surface at small nozzle to surface distances. Applied Thermal Engineering, 138:534-541. doi.org/10.1016/j.applthermaleng.2018.04.086
- Incropera FP, Dewit DP, Bergman TL, Lavine AS. 2007. Fundamentals of heat and mass transfer (Sixth Edition), John Wiley&Sons, Indiana, 447-487.
- Karabulut K, Alnak DE, 2021. Investigation of the Variation of Cooling Performance with the Channel Height in A Channel Having Impinging Jet-Cross Flow. Proceedings of ISPEC 12th International Conference on Engineering & Natural Sciences. 24-25 December, Bingöl, s. 273-290.
- Kılıç M. 2018. Elektronik sistemlerin soğutulmasında nanoakışkanlar ve çarpan jetlerin müşterek etkisinin incelenmesi. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 33(3):121-132. doi.org/10.21605/cukurovaummfd.500597
- Ma CF, Bergles AE, 1983. Boiling jet impingement cooling of simulated microelectronic chips. Heat Transfer In Electronic Equipment HTD, 28:5-12.
- Maghrabie HM, Attalla M, Fawaz HE, Khalil M. 2017. Numerical investigation of heat transfer and pressure drop of in-line array of heated obstacles cooled by jet impingement in cross-flow. Alexandria Engineering Journal, 56:285-296. doi.org/10.1016/j.aej.2016.12.022
- Mergen S, 2014. Kanal İçi Akış ve Çarpan Jet ile Birlikte Elektronik Eleman Soğutulmasının Sayısal Olarak İncelenmesi. Yüksek Lisans Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Türkiye.
- Saleha N, Fadela N, Abbes A. 2015. Improving cooling effectiveness by use chamfers on the top of electronic components. Microelectronics Reliability, 55:1067-1076. doi.org/10.1016/j.microrel.2015.04.006
- Öztürk SM, Demircan T. 2022. Numerical analysis of the effects of fin angle on flow and heat transfer characteristics for cooling an electronic component with impinging jet and cross-flow combination. Journal of the Faculty of Engineering and Architecture of Gazi University, 37(1): 57-74. doi.org/10.17341/gazimmfd.799793
- Teamah MA, Dawood MM, Shehata A., 2015. Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate. Experimental Thermal and Fluid Science, 74:235-246. doi.org/10.1016/j.expthermflusci.2015.12.012
- Wang SJ, Mujumdar AS, 2005. A comparative study of five low Reynolds number k-ε models for impingement heat transfer. Applied Thermal Engineering, 25:31-44. doi.org/10.1016/j.applthermaleng.2004.06.001